
Under consideration for publication in Math. Struct. in Comp. Science

On the expressive power of recursion,
replication and iteration in process calculi

Nadia Busi Maurizio Gabbrielli Gianluigi Zavattaro

Dip. di Scienze dell’Informazione, Univ. di Bologna, Mura A.Zamboni 7, 40127 Bologna, Italy.

Received March 2008

We investigate the expressive power of three alternative approaches for the definition of

infinite behaviors in process calculi, namely, recursive definitions, replication and

iteration. We prove several discrimination results between the calculi obtained from a

core CCS by adding the three mechanisms mentioned above. These results are obtained

by considering the decidability of four basic properties: termination (i.e. all

computations are finite), convergence (i.e. the existence of a finite computation), barb

(i.e. the ability of performing a synchronization) and weak bisimulation.

Our results, summarized in Table 1, show that the three calculi form a strict

expressiveness hierarchy, since all the mentioned properties are undecidable in CCS with

recursion, while termination and barb are decidable in CCS with replication and all the

properties are decidable in CCS with iteration.

As a corollary we obtain also a strict expressiveness hierarchy w.r.t. weak bisimulation,

since there exist weak bisimulation preserving encodings of iteration in replication and of

replication in recursion, whereas there exist no weak bisimulation preserving encoding in

the other directions.

1. Introduction

Process calculi are continuously updated with new languages, dialects and variants which
range from general frameworks such as CCS and π-calculus to formalism tailored on
specific class of applications (biological ones are probably the most common today).
Given such a rich variety it is important to formally compare the existing languages in
order to understand precisely their relative expressive power. Several notions of expressive
power are meaningful in this context: The classical notion based on the ability to express
recursive functions can be further refined by considering, for example, compositionality
properties for the encoding of a language into another or the ability to express some
patterns of behaviors (typically connected to mobility).

An important aspect which, in general, may significantly affect the expressive power
of a language is the mechanism adopted for extending finite processes in order to express
infinite behaviors: Three classical mechanisms which are used in process calculi are recur-
sion, replication, and iteration. Recursion can be supported by using process constants:
Each process constant D has an associated (possibly recursive) definition D

def
= P . By us-

ing recursively defined process constants one can obtain an “in depth” infinite behavior,

N. Busi, M. Gabbrielli, and G. Zavattaro 2

since process copies in this case can be nested at an arbitrary depth by using constant
application. On the other hand, the replication operator !P allows one to create an un-
bounded number of parallel copies of a process P , thus providing an “in width” infinite
behavior, since the copies are placed at the same level. Finally, the iteration operator P ∗

permits to iterate the execution of a process P , i.e. at the end of the execution of one
copy of P another copy can be activated. In this case, a “repetitive” infinite behavior is
supported, since the copies are executed one after the other.

It is well known that recursion and replication are equivalent (for any reasonable
notion of expressive power) for full π-calculus (MPW92), as the ability to communicate
free names together with replication and restriction allows to simulate process constants
(replication can easily be simulated by recursive definitions, provided one admits enough
constants). On the other hand, there is a common agreement on the fact that recursion
cannot be replaced by replication when name mobility is not allowed, as in the case of
CCS, even though this result has not been formally proved so far.

In this paper we compare the expressive power of recursion, replication and iteration
in the context of CCS. More precisely, we consider the three dialects CCSD, CCS! and
CCS∗ obtained by adding recursion, replication and iteration, respectively, to a core CCS
language corresponding to the finite fragment of CCS (Milner 1989) without relabeling.
For these three dialects we investigate the decidability of the following four relevant
properties of processes: termination, i.e. the non-existence of a divergent computation
(equivalently, all the computations are finite); convergence, i.e. the existence of a com-
putation that terminates; barb, i.e. the ability to perform a synchronization on a certain
channel after a (possibly empty) internal computation; weak bisimulation (here we say
that weak bisimulation is decidable if, given any pair of processes, it is decidable whether
those two processes are weakly bisimilar).

We first prove that all these properties are undecidable in CCSD. These undecidability
results are obtained by providing an encoding of Random Access Machines (Shepherd-
son and Sturgis 1963), RAMs for short, a well known deterministic Turing powerful
formalism, into CCSD. The encoding is deterministic, i.e. it presents a unique possible
computation that reflects the computation of the corresponding RAM. This proves im-
mediately that termination and convergence are undecidable. By exploiting a slightly
different (deterministic) encoding, we prove the undecidability of barb as well as of weak
bisimulation: The idea is to extend the modeling of RAMs with an observable action that
can be performed on program termination; in this way we reduce the problem of testing
the termination of a RAM to the problem of detecting an observable behavior.

Next we show that convergence and weak bisimulation remain undecidable in the lan-
guage CCS! with replication. These results are obtained by providing a nondeterministic
encoding of RAMs in CCS!. The encoding is nondeterministic in the following sense:
computations which do not follow the expected behavior of the modeled RAM can be in-
troduced by the encoding, however all these computations are infinite. This proves that a
process modeling a RAM has a terminating computation, i.e. converges, if and only if the
corresponding RAM terminates. Thus, process convergence is undecidable for the calcu-
lus with replication. The nondeterministic modeling of RAMs under replication permits
us to prove that also weak bisimulation is undecidable, by following a technique similar to

Mathematical Structures in Computer Science 3

Recursion Replication Iteration

Termination undecidable decidable decidable

Convergence undecidable undecidable decidable

Barb undecidable decidable decidable

Weak bisimulation undecidable undecidable decidable

Table 1. Summary of the results

the one described above for the calculus with recursion. Interestingly, while convergence
and weak bisimulation are undecidable under replication, we prove that termination as
well barb turn out to be decidable properties. These decidability results are obtained
by resorting to the theory of well structured transition systems (Finkel and Schnoebelen
2001). It is also worth noting that the decidability of process termination for the calculus
with replication implies the impossibility to provide a termination preserving encoding
of RAMs into CCS!.

For the calculus with process iteration we have that all the properties are decidable.
This is a consequence of the fact that the processes of this calculus are finite state.
Intuitively, this follows from the fact that each iteration activates one copy at a time
(thus only a predefined number of processes can be active at the same time) and all the
copies share the same finite set of possible states.

These results of our investigation are summarized in Table 1.
As a final corollary we obtain also that recursion, replication and iteration constitute a

strict expressiveness hierarchy w.r.t. weak bisimulation. In fact, we show that there exist
weak bisimulation preserving encodings of iteration in replication and of replication in
recursion, whereas we prove that there exist no weak bisimulation preserving encoding
in the other directions.

The remaining of this paper is structured as follows. In Section 2 we present the syntax
and the semantics of the considered calculi. Section 3 contains the deterministic RAM
encoding and the undecidability results for the calculus with recursion. In Section 4 we
first show the non deterministic RAM encoding for the calculus with replication and
prove the undecidability results. Then we prove the decidability of termination and barb
for CCS!. In Section 5 we prove that the processes of the calculus with process iteration
are finite states, while Section 6 concludes by discussing the weak-bisimulation preserving
encoding and by mentioning some relevant related work.

Preliminary versions of this paper appeared in (Busi et al. 2003; Busi et al. 2004).

2. The Calculi

We start considering the finite fragment of the core of CCS (that we sometimes call
simply CCS for brevity). After that, we present the three infinite extensions.

N. Busi, M. Gabbrielli, and G. Zavattaro 4

PRE : α.P
α−→ P PAR :

P
α−→ P ′

P |Q α−→ P ′|Q

SUM :

P
α−→ P ′

P +Q
α−→ P ′

RES :

P
α−→ P ′

(νx)P
α−→ (νx)P ′

x 6∈ n(α) COM :

P
α−→ P ′ Q

α−→ Q′

P |Q τ−→ P ′|Q′

Table 2. The transition system for finite core CCS (symmetric rules of PAR, SUM,
and COM omitted).

Definition 1. (finite core CCS) Let Name, ranged over by x, y, . . ., be a denumerable
set of channel names. The class of finite core CCS processes is described by the following
grammar:

P ::= 0 | α.P | P + P | P |P | (νx)P

α ::= τ | x | x

The term 0 denotes the empty process while the term α.P has the ability to perform the
action α (which is either the unobservable τ action or a synchronization on a channel
x) and then behaves like P . Two forms of synchronizing action are available, the output
x or the input x. The sum construct + is used to make choice between the summands
while parallel composition | is used to run parallel programs. Restriction (νx)P makes
the name x local in P . We denote the process α.0 simply with α, and the process
(νx1)(νx2) . . . (νxn)P with (νx̃)P where x̃ is the sequence of names x1, x2, . . . , xn.

For input and output actions, we write α for the complementary of α; that is, if α = x

then α = x, if α = x then α = x. We write fn(P), bn(P) for the free names and the
bound names of P . The names of P , written n(P), is the union of the free and bound
names of P . The names in a label α, written n(α) is the set of names in α, i.e. the empty
set if α = τ or the singleton {x} if α is either x or x. Table 2 contains the set of the
transition rules for finite CCS.

Definition 2. (CCSD) We assume a denumerable set of constants, ranged over by D.
The class of CCSD processes is defined by adding the production P ::= D to the
grammar of Definition 1. It is assumed that each constant D has a unique defining
equation of the form D

def
= P .

The transition rule for constant is

CONST :
P

α−→ P ′ D
def
= P

D
α−→ P ′

Mathematical Structures in Computer Science 5

0
√
−→ P ∗

√
−→

P
√
−→

(νx)P
√
−→

P
√
−→ Q

√
−→

P |Q
√
−→

P
√
−→ Q

√
−→

P +Q
√
−→

P
√
−→ Q

√
−→

P ;Q
√
−→

Table 3. Definition of the termination predicate.

It is worth noting that this rule for the semantics of constants has been adopted also
in (Giambiagi et al. 2004). In that paper, it is observed that no α-conversion is to be
considered in calculi with this form of constant definition, and this causes name captures
and scoping to be dynamic.

Definition 3. (CCS!) The class of CCS! processes is defined by adding the production
P ::= !P to the grammar of Definition 1.

The transition rule for replication is

REPL :
P | !P α−→ P ′

!P α−→ P ′

Definition 4. (CCS∗) The class of CCS∗ processes is defined by adding the production
P ::= P ∗ to the grammar of Definition 1.

Intuitively, the process P ∗ has the ability to iterate the behavior of the process P
an arbitrary number of time (possibly zero times). In order to formally describe the
semantics of iteration we explicitly represent the ending of process P with the predicate

P
√
−→. We also exploit an auxiliary operator P ;Q denoting the sequential composition

of processes. Informally, given the process P ;Q we have that the process Q can start only

if P
√
−→. Formally, the axioms and rules defining the predicate for P

√
−→ are reported

in Table 3. The transition rules for iteration are

ITER :
P

α−→ P ′

P ∗
α−→ P ′;P ∗

SEQ1 :
P

α−→ P ′

P ;Q α−→ P ′;Q

SEQ2 :
P
√
−→ Q

α−→ Q′

P ;Q α−→ Q′

N. Busi, M. Gabbrielli, and G. Zavattaro 6

In the following we adopt the following notation. We use
∏
i∈I Pi to denote the par-

allel composition of the indexed processes Pi, while we use
∏
n P to denote the parallel

composition of n instances of the process P (if n = 0 then
∏
n P is the empty process 0).

Given a process Q, its internal runs Q −→ Q1 −→ Q2 −→ . . . are given by the
sequences of τ labeled transitions, i.e., those transitions that the process can perform
without requiring interaction with the context. Formally, P −→ P ′ iff P

τ−→ P ′. We
denote with−→∗ the reflexive and transitive closure of−→. WithDeriv(P) we denote the
set of processes reachable from P with a sequence of reduction steps, formallyDeriv(P) =
{Q | P −→∗ Q}.

A process Q is dead if there exists no Q′ such that Q −→ Q′. We say that a process P
converges if there exists a dead process P ′ in Deriv(P). We say that P terminates if all
its internal runs terminate, i.e., the process P cannot give rise to an infinite computation:
formally, P terminates iff there exist no {Pi}i∈ IN, s.t. P0 = P and Pj −→ Pj+1 for any j.
Observe that process termination implies process convergence while the vice versa does
not hold.

Barbs are used to observe whether a process has the ability to perform, possibly after
an internal run, an observable action on a specific channel; formally P ⇓x iff there exist
P ′ and P ′′ s.t. P −→∗ P ′ α−→ P ′′ and n(α) = {x}.

Definition 5. (weak bisimulation) A binary, symmetric relation R on processes is a
weak bisimulation if (P,Q) ∈ R implies that, if P α−→ P ′, then one of the following holds:

— there exist Q′, Q′′, Q′′′ s.t. Q −→∗ Q′ α−→ Q′′ −→∗ Q′′′ and (P ′, Q′′′) ∈ R;
— α = τ and there exists Q′ s.t. Q −→∗ Q′ and (P ′, Q′) ∈ R.

Two processes P and Q are weakly bisimilar, written P ≈ Q, if there exists a weak
bisimulation R such that (P,Q) ∈ R.

3. Results for CCSD

A RAM (Shepherdson and Sturgis 1963), denoted in the following with R, is a com-
putational model composed of a finite set of registers r1, . . . , rn, that can hold ar-
bitrary large natural numbers, and by a program composed by indexed instructions
(1 : I1), . . . , (m : Im), that is a sequence of simple numbered instructions, like arithmeti-
cal operations (on the contents of registers) or conditional jumps. An internal state of a
RAM is given by (i, c1, . . . , cn) where i is the program counter indicating the next instruc-
tion to be executed, and c1, . . . , cn are the current contents of the registers r1, . . . , rn,
respectively.

Without loss of generality, we assume that the registers contain the value 0 at the
beginning of the computation and that the execution of the program begins with the
first instruction (1 : I1). In other words, the initial configuration is (1, 0, . . . , 0). The
computation continues by executing the other instructions in sequence, unless a jump
instruction is encountered. The execution stops when an instruction number higher than
the length of the program is reached. More formally, we indicate by (i, c1, . . . , cn) →R

(i′, c′1, . . . , c
′
n) the fact that the configuration of the RAM R changes from (i, c1, . . . , cn)

to (i′, c′1, . . . , c
′
n) after the execution of the i-th instruction.

Mathematical Structures in Computer Science 7

In (Minsky 1967) it is shown that the following two instructions are sufficient to model
every recursive function:

— (i : Succ(rj)): adds 1 to the content of register rj ;
— (i : DecJump(rj , s)): if the contents of register rj is not zero then decreases it by 1

and go to the next instruction, otherwise jumps to instruction s.

3.1. Undecidability of convergence and termination

In the remainder of this section we will reason up-to the following structural congruence
≡R used to remove terminated processes equal to 0 as well as unnecessary restrictions.
Formally, ≡R is the least congruence relation satisfying the following axioms:

P |0 ≡R P
(νx)P ≡R P if x 6∈ fn(P)

The following proposition shows that processes congruent according to ≡R have the
same operational semantics; this allows us to reason up-to this structural congruence.

Proposition 1. Let P,Q ∈ CCSD with P ≡R Q. If P α−→ P ′ then there exists Q′ such
that Q α−→ Q′ and P ′ ≡R Q′.

Proof. By induction on the proof of the relation P ≡R Q.

We now show how to reduce RAM termination to either convergence or termination in
CCSD. Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m : Im);
we model R as described in the following. For each 1 ≤ i ≤ m, we model the i-th
instruction (i : Ii) of R with a program constant Inst i defined as follows.

Inst i
def
= incj .Inst i+1 if Ii = Succ(rj)

Inst i
def
= decj .ack.Inst i+1 + zeroj .Insts if Ii = DecJump(rj , s)

In the first case, the process Inst i simply increments the register rj (by firing the incj
prefix) and activates the subsequent instruction; in the second case the process Inst i tries
either to decrement or to test whether the register rj is empty. According to the prefix
which is fired (decj or zeroj , respectively) the corresponding subsequent instruction is
activated (Inst i+1 or Insts, respectively). In the case of decrement, the process waits for
an acknowledgment ack before activating the next instruction; this is necessary in order
to activate the next instruction only after the actual update of the register.

In order to model RAM termination, we also need to take under consideration the
instruction indexes outside {1, . . . ,m} that can be reached as subsequent instructions
of one of the defined instructions (1 : I1), . . . , (m : Im). For each of these indexes i we
consider a corresponding constant defined as follows.

Inst i
def
= 0 if Ii undefined (i.e. i 6∈ {1, . . . ,m})

As far as the modeling of the registers is concerned, we represent each register rj ,
which is initially empty, with a constant Zj . The constant Zj is defined in terms of two

N. Busi, M. Gabbrielli, and G. Zavattaro 8

other constants Oj and Ej :

Zj
def
= zeroj .Zj + incj .(νx)(Oj | x.ack.Zj)

Oj
def
= decj .x + incj .(νy)(Ej | y.ack.Oj)

Ej
def
= decj .y + incj .(νx)(Oj | x.ack.Ej)

The idea behind this modeling of the registers is to exploit a chain of nested restrictions
with a length corresponding to the content of the register. More precisely, the term Zj
represents the register when empty, while Oj and Ej model the register when it has an
odd or an even content, respectively. Each time the register is incremented, the length
of the chain of restrictions augments due to the creation of a new name. Observe that in
order to avoid name collisions, the two names x and y are alternatively exploited. The
use of two different names requires also the exploitation of the two different constants
Oj and Ej .

Example 1. Consider a RAM with two registers r1 and r2 and the following program:

(1 : Succ(r1))
(2 : Succ(r1))
(3 : DecJump(r1, 5))
(4 : DecJump(r2, 3))

Assuming that the registers are initially both empty, and that the computation starts
from the instruction with index 1, the computation of the RAM above consists of two
increments of r1, followed by a first decrement of r1, a jump from instruction 4 to 3,
a second decrement of r1, a jump from instruction 4 to 3, and the final jump from
instruction 3 to the undefined instruction 5. As will be formalized below, we will model
the above RAM with the following process:

P = Inst1 | Z1 | Z2

We have that P has the following 2 deterministic reduction steps corresponding to the
two increment instructions:

P −→ Inst2 | (νx)(O1 | x.ack.Z1) | Z2

−→ Inst3 | (νx)((νy)(E1 | y.ack.O1) | x.ack.Z1) | Z2 = Q

Note that at this point of the computation the first register contains the value 2; this is
represented by the nesting of the two restrictions on the names x and y. The computation
continues with the following 3 deterministic reduction steps corresponding to the first
decrement:

Q −→ ack.Inst4 | (νx)((νy)(y | y.ack.O1) | x.ack.Z1) | Z2

−→ ack.Inst4 | (νx)((νy)(0 | ack.O1) | x.ack.Z1) | Z2

−→ Inst4 | (νx)((νy)(0 | O1) | x.ack.Z1) | Z2

≡R Inst4 | (νx)(O1 | x.ack.Z1) | Z2 = R

Note that at this point the first register contains the value 1; this is represented by the
fact that the inner restriction on y can be removed by the structural congruence. The

Mathematical Structures in Computer Science 9

computation is then completed by the following 6 deterministic reduction steps:

R −→ Inst3 | (νx)(O1 | x.ack.Z1) | Z2

−→ ack.Inst4 | (νx)(x | x.ack.Z1) | Z2

−→ ack.Inst4 | (νx)(0 | ack.Z1) | Z2

−→ Inst4 | (νx)(0 | Z1) | Z2 ≡R Inst4 | Z1 | Z2

−→ Inst3 | Z1 | Z2

−→ Inst5 | Z1 | Z2

where this last process is dead because Inst5
def
= 0.

We are now ready to formally define the process Rcjj used to model the register rj
when its content is cj .

R
cj
j

def
= Zj if cj = 0

R
cj
j

def
= (νx)

(
(νy)

(
. . . (νx)︸ ︷︷ ︸

cj restrictions

(
Oj |x.ack.Ej

)
. . .
)
| y.ack.Oj

)
| x.ack.Zj

)︸ ︷︷ ︸
cj processes

if cj > 0 is odd

R
cj
j

def
= (νx)

(
(νy)

(
. . . (νy)︸ ︷︷ ︸

cj restrictions

(
Ej | y.ack.Oj

)
. . . | y.ack.Oj

)
| x.ack.Zj

)︸ ︷︷ ︸
cj processes

if cj > 0 is even

Definition 6. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn) of R we define

[[(i, c1, . . . , cn)]]D = Insti|Rc11 | . . . |Rcnn

with Insti and R
cj
j defined as above.

As we have already discussed, the computation of the encoding of RAMs proceeds
deterministically, and corresponds exactly to the computation of the corresponding RAM;
thus the encoding terminates if and only if the considered RAM terminates, as stated by
the following theorem.

The remainder of this subsection is dedicated to the formal proof of this correctness
result.

We say that a process P performs a deterministic reduction step if it is not dead and if
P −→ P ′ and P −→ P ′′ then P ′ ≡R P ′′. A process performs a deterministic computation
if all of its derivatives are either dead or perform a deterministic computation step.

We are now ready to state the correspondence result between the computation of one
RAM and of its encoding.

Proposition 2. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im)
and registers r1, . . . , rn. We have that given the configuration (i, c1, . . . , cn) one of the
following holds:

— i 6∈ {1, . . . ,m} and [[(i, c1, . . . , cn)]]D is dead;
— (i, c1, . . . , cn) →R (i′, c′1, . . . , c

′
n) and [[(i, c1, . . . , cn)]]D performs either one or three

deterministic reduction steps reaching a process Q ≡R [[(i′, c′1, . . . , c
′
n)]]D.

N. Busi, M. Gabbrielli, and G. Zavattaro 10

Proof. It is immediate to see that [[(i, c1, . . . , cn)]]D is dead if and only if the instruction
of index i is undefined (i.e. i 6∈ {1, . . . ,m}). In this case the first item holds.

If the instruction with index i is defined then there exists (i′, c′1, . . . , c
′
n) such that

(i, c1, . . . , cn) →R (i′, c′1, . . . , c
′
n). This RAM computational step is either an increment,

or a decrement, or a test-for-zero action. In case of increment or test-for-zero we have
that [[(i, c1, . . . , cn)]]D has a deterministic reduction step leading to [[(i′, c′1, . . . , c

′
n)]]D. In

case of decrement, [[(i, c1, . . . , cn)]]D performs three deterministic steps before reaching
[[(i′, c′1, . . . , c

′
n)]]D. In this case the second item holds.

As a simple corollary of the above Proposition we have that convergence is undecidable
as we have that a RAM terminates if and only if the corresponding encoding has a
terminating computation.

Theorem 1. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Given the initial configuration (1, 0, . . . , 0) of R we have that R
terminates if and only if the process [[(1, 0, . . . , 0)]]D converges.

Proof. As a consequence of Proposition 2, we have that (1, 0, . . . , 0)→R (i1, c11, . . . , c
1
n)

→R . . . →R (ik, ck1 , . . . , c
k
n) if and only if [[(1, 0, . . . , 0)]]D −→+ [[(i1, c11, . . . , c

1
n)]]D −→+

. . . −→+ [[(ik, ck1 , . . . , c
k
n)]]D. This can be proved by induction on the length k of the

computation.
Assume now that the RAM terminates. In this case we have that (1, 0, . . . , 0) →R

(i1, c11, . . . , c
1
n)→R . . .→R (ik, ck1 , . . . , c

k
n) with the instruction of index ik undefined. By

the first item of Proposition 2 we have that [[(ik, ck1 , . . . , c
k
n)]]D is dead, thus [[(1, 0, . . . , 0)]]D

converges due to the computation [[(1, 0, . . . , 0)]]D −→+ [[(i1, c11, . . . , c
1
n)]]D −→+ . . . −→+

[[(ik, ck1 , . . . , c
k
n)]]D.

Assume now that the RAM does not terminate. By contradiction we prove that
[[(1, 0, . . . , 0)]]D does not converge. Assume that [[(1, 0, . . . , 0)]]D converges. In this case we
have that [[(1, 0, . . . , 0)]]D −→+ [[(i1, c11, . . . , c

1
n)]]D −→+ . . . −→+ [[(ik, ck1 , . . . , c

k
n)]]D with

the instruction of index ik undefined. By the first item of Proposition 2 we have that
the considered RAM terminates due to the computation (1, 0, . . . , 0) →R (i1, c11, . . . , c

1
n)

→R . . . →R (ik, ck1 , . . . , c
k
n). This contradicts the initial assumption, i.e., that the RAM

does not terminate.

3.2. Undecidability of barb and weak bisimulation

Here, we slightly modify the above modeling of RAMs in order to prove that also barb
and weak bisimulation are undecidable. The modeling is essentially the same with the
unique difference that we add outer restrictions, on all the names used by the encoding,
in order to keep unobservable the internal actions, and we add a unique observable action
w, that communicates termination. In this way, we have that the modeling of a RAM R

is weakly bisimilar to w (resp. has a barb on the channel w) if and only if R terminates
thus proving that weak bisimulation (resp. barb) is undecidable.

All the definitions of the encoding are as in the previous Subsection excluding the

Mathematical Structures in Computer Science 11

definition of the undefined instructions which is now as follows.

Inst i
def
= w if Ii undefined (i.e. i 6∈ {1, . . . ,m})

Recall that instructions outside the range {1, . . . ,m} can be reached only on program
termination.

We can now prove the undecidability of weak barb.

Theorem 2. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. We have that R terminates if and only if [[(1, 0, . . . , 0)]]D ⇓ w.

Proof. As we have already discussed in the previous Subsection, the computation of
the encoding of RAMs proceeds deterministically, and corresponds exactly to the com-
putation of the corresponding RAM.

Assume now that the RAM R terminates. In this case the encoding has a deterministic
internal run leading to a process that contain the encoding of an undefined instruction
Insti, i.e., the process w. We can conclude that the encoding has a barb on w.

Assume now that the RAM R does not terminate. In this case the encoding has an
infinite deterministic internal run, thus no process Insti, with corresponding instruction
Ii undefined, can be produced. As only such processes can perform actions on the channel
w, we can conclude that the encoding has no barb on w.

The above theorem proves that barb is undecidable in CCSD. As a consequence of this
theorem, and as a consequence of the fact that the encoding has only one deterministic
internal run, we have that also weak bisimulation is undecidable. In fact, it is sufficient to
add outer restrictions to the encoding, on all the names used by the encoding except w,
in order to obtain a process which is weakly equivalent to w if and only if the encoding
has a barb on w. Formally, we have that:

[[(1, 0, . . . , 0)]]D ⇓ w
if and only if

(ν inc1, dec1, zero1, . . . , incn, decn, zeron, ack)
(
[[(1, 0, . . . , 0)]]D

)
≈ w

Hence, also weak bisimulation is undecidable.

4. Results for CCS!

4.1. Undecidability of convergence and weak bisimulation

We prove that CCS! is powerful enough to model, at least in a nondeterministic way,
any Random Access Machine. Our encoding is nondeterministic because it introduces
computations which do not follow the expected behavior of the modeled RAM. However,
all these computations are infinite. This ensures that, given a RAM, its modeling has a
terminating computation if and only if the RAM terminates. This proves that convergence
is undecidable.

Exploiting the encoding, we also prove that weak bisimulation is undecidable. The idea
is to use only two observable actions, namely w and w′. The former makes visible the
fact that the program counter has reached an index outside the original range {1, . . . ,m}

N. Busi, M. Gabbrielli, and G. Zavattaro 12

of program instructions. The latter makes visible the activation of an incorrect infinite
computation. In this way, we have that a correct terminating run of the encoding includes
one and only one observable action w, while all incorrect computations include also the
other observable action w′ Thus, if P is the encoding of a RAM R, then R terminates if
and only if P ≈ τ.P + τ.w. This proves that weak bisimulation is undecidable.

In this section we reason up-to an extended version of the structural congruence ≡R
that allows also for the reordering of processes in parallel compositions. The new defini-
tion includes also the following axioms

P |Q ≡R Q|P P |(Q|R) ≡R (P |Q)|R

As we proved that the previous version of ≡R preserves the operational semantics of
CCSD. This new extended version of ≡R preserves the operational semantics of the
calculus with replication.

Proposition 3. Let P,Q ∈ CCS! with P ≡R Q. If P α−→ P ′ then there exists Q′ such
that Q α−→ Q′ and P ′ ≡R Q′.

Proof. By induction on the proof of the relation P ≡R Q.

Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m : Im). We
model separately registers and instructions.

The program counter is modeled with a process pi indicating that the i-th instruction
is the next to be executed. For each 1 ≤ i ≤ m, we model the i-th instruction (i : Ii) of
R with a replicated process which is guarded by an input operation pi. Once activated,
the instruction performs its operation on the registers, then waits for an acknowledg-
ment indicating that the operation has been performed, and finally updates the program
counter by producing pi+1 (or ps in case of jump).

Formally, for any 1 ≤ i ≤ m, the instruction (i : Ii) is modeled by [[(i : Ii)]] which is a
shorthand notation for the following processes.

[[(i : Ii)]] : !pi.(incj | ack.pi+1) if Ii = Succ(rj)

[[(i : Ii)]] : !pi.(decj | (ack.pi+1 + jmp.ack.ps)) if Ii = DecJump(rj , s)

It is worth noting that a program counter message pi, with the index i outside the range
{1, . . . ,m}, is produced on program termination. It is not restrictive to assume that the
unique of these indexes is m+1. For this index m+1 we assume the presence of a process
pm+1.w able to make termination observable on the channel w.

We model each register rj , when it contains cj , with the following process simply
denoted with [[rj = cj]] in the following:

[[rj = cj]] : (ν m, u)
(∏

cj
u |

incj .(m | u) + decj .(u.m+ jmp.(u.DIV | nrj)) |
!m.(ack | incj .(m | u) + decj .(u.m+ jmp.(u.DIV | nrj)))

)
|

!nrj .(ν m, u)
(

m | !m.(ack | incj .(m | u) + decj .(u.m+ jmp.(u.DIV | nrj)))
)

Mathematical Structures in Computer Science 13

where DIV is a process able to activate the following infinite observable computation:

DIV : w′ | !w′.w′

Example 2. We consider a RAM with only one register rj , initially empty, and the
following program instructions:

(1 : Succ(r1))
(2 : DecJump(r1, 2))

The RAM computation consists simply of an increment followed by a decrement. The
encoding of this RAM includes the encoding of the program counter, of the instructions,
and of the register:

P = p1 | !p1.(inc1|ack.p2) | !p2.(dec1 | (ack.p3 + jmp.ack.p2)) |
(ν m, u)

(
inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)) |
!m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))

)
|

!nr1.(ν m, u)
(

m | !m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))
)

This process has 4 deterministic reduction steps (corresponding to the execution of the
increment instruction) leading to a process which is structurally equivalent to the follow-
ing one:

Q = p2 | !p1.(inc1|ack.p2) | !p2.(dec1 | (ack.p3 + jmp.ack.p2)) |
(ν m, u)

(
u |

inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)) |
!m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))

)
|

!nr1.(ν m, u)
(

m | !m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))
)

The above process Q has two deterministic reduction steps leading to a process struc-
turally equivalent to the following one:

R = (ack.p3 + jmp.ack.p2) | !p1.(inc1|ack.p2) | !p2.(dec1 | (ack.p3 + jmp.ack.p2)) |
(ν m, u)

(
u |

(u.m+ jmp.(u.DIV | nr1)) |
!m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))

)
|

!nr1.(ν m, u)
(

m | !m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))
)

The above process R has two possible reduction steps: either a synchronization on u or
a synchronization on jump. In the first case the computation proceeds deterministically
until a dead process with the program counter p3 is reached. In the second case the

N. Busi, M. Gabbrielli, and G. Zavattaro 14

following process is reached:

S = ack.p2 | !p1.(inc1|ack.p2) | !p2.(dec1 | (ack.p3 + jmp.ack.p2)) |
(ν m, u)

(
u |

(u.DIV | nr1) |
!m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))

)
|

!nr1.(ν m, u)
(

m | !m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))
)

It is easy to see that the above process does not converge because it is not possible to re-
move the possibility for the processes u and u.DIV to synchronize. This synchronization
activates the divergent process DIV . This is made clear assuming that such synchroniza-
tion is delayed for at least three reduction steps. In this case, the computation continues
with three synchronizations on the channels nr1, m, and ack, and the following process
is reached:

T = p2 | !p1.(inc1|ack.p2) | !p2.(dec1 | (ack.p3 + jmp.ack.p2)) |
(ν m, u)

(
u | u.DIV |

!m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))
)
|

(ν m, u)
(

inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)) |
!m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))

)
|

!nr1.(ν m, u)
(

m | !m.(ack | inc1.(m | u) + dec1.(u.m+ jmp.(u.DIV | nr1)))
)

The processes u and u.DIV occurring on the second line of the definition above can-
not interact with any other processes, thus the unique actions they can perform is a
synchronization that activates the divergent process DIV .

Observe that the content cj of the register is modeled by the parallel composition of
a corresponding number of processes (u | d.u.m); the term u represents a unit inside
the register, while d.u.m is an auxiliary term that is responsible for removing the unit
when the register is decremented. The register is blocked until either the prefix incj or
the prefix decj fires. In the former case, the effect is that a new instance of the process
(u | d.u.m) is spawn (and the ack is produced after having re-activated the process able to
perform either the incj or the decj actions). In the latter case, the computation proceeds
nondeterministically. Either the register is actually decremented (activating one of the
processes d.u.m), or the decision to jump is taken. In this case, a possibly diverging
process u.DIV is spawn and a new register instance is activated executing nrj . The new
instance of the register guarantees that if the register was not empty at the time of the
jump, the process u.DIV eventually executes the u action (performing a synchronization
with one of the still available units u) and starts its infinite computation.

It is worth to note that even in correct computations (i.e., those corresponding to
the RAM computation) some garbage is left when a jump instruction is executed. The
garbage is due to the activation of a new instance of the register. The garbage processes

Mathematical Structures in Computer Science 15

(one for each register) is as follows.

Gj : (ν m, u)
(

u.DIV |
!m.(ack | incj .(m | u) + decj .(u.m+ jmp.(u.DIV | nrj)))

)
Note that the a garbage process is dead as it is composed of processes prefixed by input
actions on restricted names.

We are now ready to formally define the RAM encoding.

Definition 7. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn) of R we define

[[(i, c1, . . . , cn)]]R =
(ν p1, . . . , pm, pm+1, inc1, dec1, nr1, . . . , incn, decn, nrn, ack, jmp)
(pi | [[(1 : I1)]] | . . . | [[(m : Im)]] | pm+1.w |

[[r1 = c1]] | . . . | [[rn = cn]] |
∏
k1
G1 | . . . |

∏
kn
Gn)

where the modeling of program instructions [[(i : Ii)]], the modeling of registers [[rj = cj]],
and the garbage processes G1, . . . , Gn have been defined above, and k1 . . . kn are natural
numbers. Observe that due to the presence of k1, . . . , kn the target of the encoding is not
a unique process but it is a class of processes which differ only in the amount of garbage.

We are now ready to state the correspondence result between the computations of one
RAM and of its encoding.

Proposition 4. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im)
and registers r1, . . . , rn. We have that given the configuration (i, c1, . . . , cn) one of the
following holds:
— i 6∈ {1, . . . ,m} and each process in [[(i, c1, . . . , cn)]]R has a deterministic reduction step

leading to a dead process,
— Ii is an increment instruction, (i, c1, . . . , cn) →R (i′, c′1, . . . , c

′
n), and each process in

[[(i, c1, . . . , cn)]]R performs four deterministic reduction steps reaching a process Q
which is structurally congruent w.r.t. ≡R to some process in [[(i′, c′1, . . . , c

′
n)]]R,

— Ii is a decrement instruction, (i, c1, . . . , cn) →R (i′, c′1, . . . , c
′
n), and each process in

[[(i, c1, . . . , cn)]]R performs two deterministic reduction steps reaching a process Q for
which the following holds: Q is not dead and for each Q′ such that Q −→ Q′, either Q′

has a sequence of deterministic reduction steps (of length either 2 or 3) to a process
Q′′ which is structurally congruent w.r.t. ≡R to some process in [[(i′, c′1, . . . , c

′
n)]]R, or

Q′ does not converge.

Proof. The proof for the first two items is immediate. In the third case, we observe
that either the computation of the encodings in [[(i, c1, . . . , cn)]]R faithfully reproduces
the RAM computation (and in this case the first part holds) or a “wrong jump” (i.e.
a synchronization on the channel jmp is executed even if the tested register cj is not
empty) is executed. In this case, the process

(ν m, u)
(∏
cj

u | u.DIV | nrj)) |!m.(ack | incj .(m | u)+decj .(u.m+jmp.(u.DIV | nrj)))
)

N. Busi, M. Gabbrielli, and G. Zavattaro 16

appears at top level (i.e. is not guarded by any prefix). We have that, as cj > 0, any
process including the above process at top level does not terminate.

As a simple corollary of the above Proposition we have that convergence is undecidable
as we have that a RAM terminates if and only if the corresponding encoding has a
terminating computation.

Theorem 3. LetR be a RAM with program (1 : I1), . . . , (m : Im) and state (i, c1, . . . , cn),
and let the process P be in [[(i, c1, . . . , cn)]]R. Then (i, c1, . . . , cn) terminates if and only
if P converges.

Proof. Similar to the proof of the Theorem 1 in which Proposition 4 is used instead of
Proposition 2.

This proves that convergence is undecidable in CCS!.
It is worth to note that differently from the RAM encoding presented for CCSD, we

cannot conclude that also termination is undecidable. In fact, the processes produced
by the new encoding are nondeterministic as additional infinite computations are added
also to processes that encode a terminating RAM. Hence, it is no longer true that for
these processes convergence and termination coincide.

We conclude this section proving the also weak bisimulation is undecidable.

Theorem 4. LetR be a RAM with program (1 : I1), . . . , (m : Im) and state (i, c1, . . . , cn),
and let the process P be in [[(i, c1, . . . , cn)]]R. Then (i, c1, . . . , cn) terminates if and only
if P ≈ τ.P + τ.w.

Proof. Assume that (i, c1, . . . , cn) does not terminate. Consider one of the processes P
in [[(i, c1, . . . , cn)]]R. By the Theorem 3 we have that any P cannot converge. In order to
prove that P 6≈ τ.P + τ.w we proceed by contradiction assuming that P ≈ τ.P + τ.w. In
this case, as τ.P + τ.w

τ−→ w
w−→ 0, we have that also P−→∗P ′ w−→ P ′′−→∗P ′′′ with

P ′′′ ≈ 0. The unique way in which P ′ can perform a transition labeled with w is by
activation of the process pm+1.w. Moreover, as P cannot converge, also P ′ (which is one
of its derivatives) cannot. It is easy to see that any infinite computation starting from
P ′ cannot include reductions executed by an instruction (in fact, the program counter
process pi is definitively consumed by the input action pm+1). Thus, all computations
are due to the presence in P ′ of some DIV process. It is easy to see that such process
is present also in P ′′. Hence all derivatives of P ′′, thus also P ′′′, can perform actions on
the observable channel w′ that cannot be mimicked by 0. Hence, P ′′′ 6≈ 0 which is in
contradiction with what we observed above.

Assume now that (i, c1, . . . , cn) terminates. Consider a process P in [[(i, c1, . . . , cn)]]R.
We prove that P ≈ τ.P + τ.w showing that the following relation

R = Id ∪ {(P, τ.P + τ.w)}
∪ {(Q,w) | Q ≡R Q′′ with Q′ −→ Q′′ and Q′ ∈ [[(m+ 1, c1, . . . , cn)]]R

for some c1, . . . , cn}
∪ {(Q,0) | Q ≡R Q′′′ with Q′ −→ Q′′

w−→ Q′′′ and Q′ ∈ [[(m+ 1, c1, . . . , cn)]]R
for some c1, . . . , cn}

Mathematical Structures in Computer Science 17

(where Id is the identity relation) is a weak bisimulation.
We first consider the pair (P, τ.P + τ.w). Any transition executable by P can be

mimicked by the τ.P branch. The process τ.P+τ.w can perform two kinds of τ transitions.
The first one can be mimicked by P with no transition. The second one, can be mimicked
by P by executing the whole terminating computation (that exists by Proposition 4)
leading to a process structurally equivalent to a process in [[(m+ 1, c1, . . . , cn)]]R. This
process can perform an additional reduction (i.e. the synchronization on the channel
pm+1) and reach one of those terms Q such that, by the second line of the definition of
R, (Q,w) is in R.

We now consider one of the pairs (Q,w) that are in R due to the second line in
the definition. Both processes have a unique outgoing transition labeled with w, leading
respectively to a process Q′ and the empty process 0 such that, by the last line of the
definition of R, (Q′,0) is in R.

We complete the proof simply observing that, given one of the pairs (Q,0) that are
in R due to the last line in the definition, we have that both processes have no outgoing
transitions.

This proves that also weak bisimulation is undecidable in CCS!.

4.2. Decidability of termination

We have already observed that the undecidability result proved in the Theorem 3 applies
to convergence and not to termination. In this subsection we prove that, differently from
the calculus with general recursion, in CCS! termination is indeed decidable. This result
is based on the theory of well-structured transition systems, so we start this section by
recalling some basic definitions and results from (Finkel and Schnoebelen 2001) that
will be used in the following. Then, since these results are valid for finitely branching
transition systems, we provide an alternative finitely branching semantics for CCS! which
is equivalent w.r.t. termination to the one presented in Section 2. This allows us to prove
that termination is decidable for CCS! processes by defining a suitable well-structured
transition system for CCS!.

4.3. Well-Structured Transition System

The following results and definitions are from (Finkel and Schnoebelen 2001) unless
differently specified. Recall that a quasi-order (or, equivalently, preorder) is a reflexive
and transitive relation.

Definition 8 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order ≤ over a
set X such that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j

such that xi ≤ xj .

Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an infinite
increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .). Thus well-quasi-orders
exclude the possibility of having infinite strictly decreasing sequences.

N. Busi, M. Gabbrielli, and G. Zavattaro 18

We also need a formal definition for (finitely branching) transition systems. This can
be given as follows. Here and in the following→+ (resp.→∗) denotes the transitive (resp.
the reflexive and transitive) closure of the relation →.

Definition 9. A transition system is a structure TS = (S,→), where S is a set of states
and →⊆ S × S is a set of transitions. We define Succ(s) as the set {s′ ∈ S | s → s′}
of immediate successors of S. We say that TS is finitely branching if, for each s ∈ S,
Succ(s) is finite.

We also define Pred(s) as the set {s′ ∈ S | s′ → s} of immediate predecessors of s,
while Pred∗(s) denotes the set {s′ ∈ S | s′ →∗ s} (of predecessors of s).

The functions Succ, Pred and Pred∗ will be used also on sets by assuming that in
this case they are defined by the point-wise extension of the above definitions.

The key tool to decide several properties of computations is the notion of well-structured
transition system. This is a transition systems equipped with a well-quasi-order on states
which is (upward) compatible with the transition relation. Here we will use a strong ver-
sion of compatibility, hence the following definition.

Definition 10 (Well-structured transition system with strong compatibility).
A well-structured transition system with strong compatibility is a transition system TS =
(S,→), equipped with a quasi-order ≤ on S, such that the two following conditions hold:

1 ≤ is a well-quasi-order;
2 ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all transitions

s1 → s2, there exists a state t2 such that t1 → t2 and s2 ≤ t2 holds.

The following theorem is a special case of Theorem 4.6 in (Finkel and Schnoebelen
2001) and will be used to obtain our decidability result.

Theorem 5. Let TS = (S,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, decidable ≤ and computable Succ. Then the existence
of an infinite computation starting from a state s ∈ S is decidable.

We will need also a result due to Higman which allows to extend a well-quasi-order
from a set S to the set of the finite sequences on S. To be more precise, given a set S let
use denote by S∗ the set of finite sequences built by using elements in S. We can define
a quasi order on S∗ as follows.

Definition 11. Let S be a set and ≤ a quasi order over S. The relation ≤∗ over S∗

is defined as follows. Let t, u ∈ S∗, with t = t1t2 . . . tm and u = u1u2 . . . un. We have
that t ≤∗ u iff there exists an injection f from {1, 2, . . . ,m} to {1, 2, . . . , n} such that
ti ≤ uf(i) and i ≤ f(i) for i = 1, . . . ,m.

The relation ≤∗ is clearly a quasi order over S∗. It is also a wqo, since we have the
following result.

Lemma 1. [Higman] Let S be a set and ≤ a wqo over S. Then the relation≤∗ is a wqo
over S∗.

Mathematical Structures in Computer Science 19

Finally we will use also the following proposition, whose proof is immediate.

Proposition 5. Let S be a finite set. Then the equality is a wqo over S.

4.3.1. A finitely branching transition system for CCS!

Due to the rule for replication, the transition systems for CCS! defined in Section 2
is not finitely branching. As previously mentioned, Theorem 5 applies only to finitely
branching transition systems. Hence, in order to use it, we need to define a new finitely
branching transition system for CCS! which is equivalent to the one presented in Section
2 w.r.t. termination. This new transition system can be obtained by reformulating the
rule for replication as follows.

Let us define a new transition relation α7→ over CCS! processes as the least relation
satisfying all the axioms and rules of Table 2 (where α−→ is substituted by α7→) plus the
following rules REPL1 and REPL2.

REPL1 :
P

α7→ P ′

!P α7→ P ′| !P

REPL2 :
P

α7→ P ′ P
α7→ P ′′

!P τ7→ P ′| P ′′| !P

Rule REPL of Section 2 caused an infinitely branching transition system because in the
premise one could use an unbound number of copies of the process P . So, for example,
from (α.P)! one could obtain the transitions

!(α.P) α−→ P |(α.P)!,
!(α.P) α−→ P |P |!(α.P)
...

This behavior is ruled out by using REPL1, where the premise does not involve the !. Rule
REPL2 is added because some computations depend on the possibility of synchronizing
two copies of P generated by !P .

As in the case of the standard transition system, we assume that the reductions 7→
of the new semantics corresponds to the τ–labeled transitions τ7→. Moreover, also for the
new semantics, we say that a process P terminates if and only if all its computations are
finite, i.e. it cannot give rise to an infinite sequence of 7→ reductions.

In order to prove the equivalence w.r.t. termination of the semantics of CCS! pre-
sented in Section 2 with the alternative semantics presented here, we use the following
congruence on processes which allows us to simplify the proofs.

Definition 12. We define ≡T as the least congruence relation satisfying the following
axioms:

P |Q ≡T Q|P
P |(Q|R) ≡T (P |Q)|R
P |0 ≡T P
P |!P ≡T !P

N. Busi, M. Gabbrielli, and G. Zavattaro 20

The following proposition shows that congruent processes are equivalent w.r.t. termi-
nation when considering the −→ transitions.

Proposition 6. Let P,Q ∈ CCS! with P ≡T Q. If P α−→ P ′ then there exists Q′ such
that Q α−→ Q′ and P ′ ≡T Q′.

Proof. By induction on the proof of the relation P ≡T Q.

The same hold also in the case of 7→ transitions, as shown by the following.

Proposition 7. Let P,Q ∈ CCS! with P ≡T Q. If P α7→ P ′ then there exists Q′ such
that Q α7→ Q′ and P ′ ≡T Q′.

Proof. By induction on the proof of the relation P ≡T Q.

Then we have the following two propositions which show that −→ and 7→ induce the
same derivations up to ≡T congruence.

Proposition 8. Let P ∈ CCS!. If P α−→ P ′ then there exists P ′′ such that P α7→ P ′′ and
P ′ ≡T P ′′.

Proof. By induction on the proof of the derivation P
α−→ P ′.

Proposition 9. Let P ∈ CCS!. If P α7→ P ′ then there exists P ′′ such that P α−→ P ′′ and
P ′ ≡T P ′′.

Proof. By induction on the proof of the derivation P
α7→ P ′.

From this four propositions it is immediate to obtain the result stating the equivalence
w.r.t. termination.

Corollary 1. Let P ∈ CCS!. Then P terminates according to the semantics (defined
by) −→ iff P terminates according to the new semantics 7→.

4.3.2. Termination is decidable in CCS!

The last, and more complex, step in order to prove that termination is decidable for
(CCS!,−→) is to equip the transition system (CCS!, 7→) with a well-quasi-order compat-
ible with 7→. The desired result then follows from Theorem 5 and Corollary 1.

To define the well-quasi-order we first introduce another congruence con processes,
which is simpler than≡T and which turns out to be compatible with 7→. In fact, differently
from the case of the previous section, here the congruence is needed only to simplify the
definition of the quasi-order, hence we do not need to take into account the replication
operator.

Definition 13. We define ≡w as the least congruence relation satisfying the following
axioms:

P |Q ≡w Q|P
P |(Q|R) ≡w (P |Q)|R
P |0 ≡w P

Mathematical Structures in Computer Science 21

We can now define the relation � which will be proven to be a well-quasi-order.

Definition 14. Let P,Q ∈ CCS!. We write P � Q iff there exist n, x1, . . . , xn,P ′, R,
P1, . . . , Pn, Q1, . . . , Qn such that P ≡w P ′|

∏n
i=1(νxi)Pi,

Q ≡w P ′|R|
∏n
i=1(νxi)Qi, and Pi � Qi for i = 1, . . . , n.

Intuitively P � Q holds if Q can be obtained, up to ≡w, from P by adding some
parallel processes while preserving the nesting structure given by restrictions. In order
to show that the relation � is indeed a quasi order we need some more notation and a
preliminary lemma.

First we define the maximum number dν(P) of nested restrictions in a process P .

Definition 15. Let P ∈ CCS!. We define dν(P) inductively as follows:

dν(α.P) = dν(P)
dν(P +Q) = max({dν(P), dν(Q)})
dν(P |Q) = max({dν(P), dν(Q)})
dν((νx)P) = 1 + dν(P)
dν(!P) = dν(P)

Then we need also a notation for indicating all the sequential and bang subprocesses
of P .

Definition 16. Let P ∈ CCS!. The set Sub(P) containing all the sequential and bang
subprocesses of P is defined inductively as follows:

Sub(α.P) = {α.P} ∪ Sub(P)
Sub(P +Q) = {P +Q} ∪ Sub(P) ∪ Sub(Q)
Sub(P |Q) = Sub(P) ∪ Sub(Q)
Sub((νx)P) = Sub(P)
Sub(!P) = {!P} ∪ Sub(P)

Finally with PP,n we denote the set of all those CCS! processes whose nesting level
of restrictions is not greater than n and such that their sequential subprocesses, bang
subprocesses and and bound names are contained in the corresponding elements of P .
More precisely we have the following definition.

Definition 17 (PP,n). Let n be a natural number and P a process. We define PP,n as
follows:

PP,n = {Q ∈ CCS! | Sub(Q) ⊆ Sub(P) ∧ bn(Q) ⊆ bn(P) ∧ dν(Q) ≤ n}

The notion of PP,n is important because processes contained in PP,n can be written
in a sort of normal form (up to ≡w) which allows us to simplify the proofs. This is the
content of the following lemma.

Lemma 2. Let P ∈ CCS!, n ≤ dν(P) and Q ∈ PP,n. Suppose that |bn(P)| = m and

N. Busi, M. Gabbrielli, and G. Zavattaro 22

bn(P) = {x1, . . . , xm}. Then there exist l, k1, . . . , km such that

Q ≡w
l∏
i=1

Qi|
m∏
j=1

(
kj∏
h=1

(νxj)Rj,h)

for some
Qi ∈ Sub(P) for i = 1, . . . , l
Rj,h ∈ PP,n−1 for j = 1, . . . ,m (and corresponding h = 1, . . . kj)

Proof. By induction on the structure of Q.

Using this normal form we can prove that � is a quasi order.

Proposition 10. The relation � is a quasi order over CCS! processes.

Proof. Transitivity of � is a consequence of the following fact.
If P � Q, by definition of � and by Lemma 2 it follows that that

P ≡w
l∏
i=1

Pi|
m∏
j=1

kj∏
h=1

(νxj)Rj,h

and

Q ≡w
l+l′∏
i=1

Pi|
m∏
j=1

kj+k
′
j∏

h=1

(νxj)R′j,h

with Pi ∈ Sub(P |Q) for i = 1, . . . , l + l′ and Rj,h � R′j,h for j = 1, . . . ,m (and corre-
sponding h = 1, . . . , kj).

To prove that � is a well-quasi-order we need two more preliminary results. The first,
rather obvious, states that the set of sequential and bang subprocesses of a process is
finite.

Proposition 11. Given a process P ∈ CCS! the set Sub(P) is finite.

Proof. By induction on the structure of P .

The second one shows that when performing a derivation step we obtain a process
which is not more “complicated” than the original one. This is an important feature
of CCS! which is due to the absence of recursive definitions. Essentially this is the key
property that allows us to obtain the decidability of termination.

Proposition 12. Let P ∈ CCS! and Q ∈ PP,n. If Q α7→ Q′ then Q′ ∈ PP,n.

Proof. By induction on the proof of transition Q
α7→ Q′.

An immediate consequence of the above proposition is that all the processes reachable
from P with a sequence of reduction steps belong to PP,n, where n is the maximum level
of nesting of P . We state this fact as an explicit corollary since we will need it later.
So, we denote by Deriv(P) the processes reachable from P with a sequence of reduction
steps.

Mathematical Structures in Computer Science 23

Definition 18. Let P ∈ CCS!. Then we define

Deriv(P) = {Q | P 7→∗ Q}

Then we have the following.

Corollary 2. Let P ∈ CCS!. Then Deriv(P) ⊆ PP,dν(P) holds.

Proof. Immediate from Proposition 12.

Now we are ready to prove that � is a well-quasi-ordering. The key idea is the following:
we use Lemma 2 to transform each derivative of P in 1 + m (finite) sequences, where
m is the cardinality of bn(P). The first sequence is over Sub(P) which is a finite set,
whereas the other sequences are over processes that are “simpler” than P , in the sense
that the nesting level of restrictions in those processes is strictly smaller than dν(P). The
result is proved proceeding by induction on the nesting level of restrictions and using the
Higman’s lemma.

Theorem 6. Let P ∈ CCS! and n ≥ 0. The relation � is a wqo over PP,n.

Proof. The proof is by induction on n.
Let n = 0.

Take an infinite sequence P1, P2, . . . , Pi, . . ., with Pi ∈ PP,0 for i > 0.
By Lemma 2, for any i we have that Pi ≡w

∏ni
j=1 Pi,j , with Pi,j ∈ Sub(P).

Hence, we have an infinite sequence of elements of Sub(P)∗; as Sub(P) is finite (by
Proposition 11), by Proposition 5 and Higman’s Lemma (Lemma 1) we have that =∗ is
a wqo over Sub(P)∗ (the relation =∗ on sequences is defined according to Definition 11,
where we consider equality as the quasi order on the starting set).
It’s easy to see that if Pi,1Pi,2 . . . Pi,ni =∗ Pk,1Pk,2 . . . Pk,nk then Pi � Pk.

For the inductive step, let n > 0 and take an infinite sequence P1, P2, . . . , Pi, . . ., with
Pi ∈ PP,n for any i > 0.
By Lemma 2, there exists m such that, for any i we have that

Pi ≡w
ni∏
j=1

Pi,j |
m∏
j=1

ki,j∏
h=1

(νxj)Ri,j,h

with Pi,j ∈ Sub(P) and Ri,j,h ∈ PP,n−1.
Hence, each Pi can be seen as composed of m+ 1 finite sequences:

Pi,1 . . . Pi,ni
Ri,1,1 . . . Ri,1,ki,1
...
Ri,m,1 . . . Ri,m,ki,m

We note that the first sequence is composed of elements from the finite set Sub(P),
whereas the other m sequences are composed of elements in PP,n−1. We know from the
base case that =∗ is a wqo over Sub(P)∗.
By inductive hypothesis, we have that � is a wqo on PP,n−1; hence, by Higman’s Lemma

N. Busi, M. Gabbrielli, and G. Zavattaro 24

we have that �∗ is a wqo on P∗P,n−1.
We start extracting an infinite subsequence from P1 . . . Pi . . . making the finite sequences
Pi,1 . . . Pi,ni increasing w.r.t. =∗; then, we extract an infinite subsequence from the sub-
sequence obtained in the previous step, that makes the finite sequences Ri,1,1 . . . Ri,1,ki,1
increasing w.r.t. �∗, and so on.
At the end of the process we obtain an infinite subsequence of P1 . . . Pi . . . that is ordered
w.r.t. �.

As the last step in order to obtain our decidability result, we need to show that the
relation � of Definition 14 is strongly compatible with α7→. This is the content of theorem
7 below which uses the following proposition.

Proposition 13. Let P,Q ∈ CCS!. If P ≡w Q and Q
α7→ Q′ then there exists P ′ such

that P α7→ P ′ and P ′ ≡w Q′.

Proof. By induction on the proof of the relation P ≡T Q.

Theorem 7. Let P,Q, P ′ ∈ CCS!. If P α7→ P ′ and P � Q then there exists Q′ such that
Q

α7→ Q′ and P ′ � Q′.

Proof. The proof is by induction on dν(P).
By definition of � we have that P ≡w P |

∏n
i=1(νxi)Pi and Q ≡w P |R|

∏n
i=1(νxi)Qi,

with Pi � Qi for i = 1, . . . , n.
First of all, note that dν(Pi) < dν(P) for i = 1, . . . , n.
As P α7→ P ′, by Proposition 13 also P |

∏n
i=1(νxi)Pi

α7→ P ′′ wih P ′′ ≡w P ′. The proof
proceeds by case analysis on the last rule applied in the proof of transition P |

∏n
i=1(νxi)Pi

α7→
P ′′.

We can then state the main result of this section.

Theorem 8. Let P ∈ CCS!. Then the transition system (Deriv(P), 7→,�) is a finitely
branching well-structured transition system with strong compatibility, decidable � and
computable Succ.

Proof. The fact that (Deriv(P), 7→) is finitely branching derives from an inspection of
the transition rules (in particular REPL1 and REPL2). The fact that � is a well-quasi-order
on Deriv(P) is a consequence of Corollary 2 and Theorem 6 (taking n = dν(P)). Strong
compatibility has been proven in Theorem 7.

Corollary 3. Let P ∈ CCS!. The termination of process P is decidable.

Proof. Immediate from Theorem 5, Corollary 1 and Theorem 8.

4.4. Decidability of barb

In this section we show that the ability of a process to perform, possibly after some
internal moves, an observable action on a given channel is a decidable property in the
calculus with replication. As previously mentioned such a property will be called barb,
for short.

Mathematical Structures in Computer Science 25

Also this result is based on the theory of well-structured transition systems and we
need here some additional definitions and results from (Finkel and Schnoebelen 2001).

Recall that given a quasi-order ≤ over X, an upward-closed set is a subset I ⊆ X such
that the following holds: ∀x, y ∈ X : (x ∈ I ∧ x ≤ y) ⇒ y ∈ I. Given x ∈ X, we define
its upward closure as ↑ x = {y ∈ X | x ≤ y}. This notion can be extended to sets in the
obvious way: given a set Y ⊆ X we define its upward closure as ↑ Y =

⋃
y∈Y ↑ y.

Definition 19 (Finite basis). A finite basis of an upward-closed set I is a finite set B
such that I =

⋃
x∈B ↑ x.

In our case the notion of basis is particularly important when considering the basis
of the predecessor of a state in a transition system. More precisely, we are interested in
effective pred-basis as defined below. Recall from Definition 9 that Pred(S) denote the
immediate predecessors of a set of states S while Pred∗(S) are the predecessors.

Definition 20 (Effective pred-basis). A well-structured transition system has effec-
tive pred-basis if there exists an algorithm such that, for any any state s ∈ S, it returns
the set pb(s) which is a finite basis of ↑ Pred(↑ s).

The following proposition is a special case of Proposition 3.5 in (Finkel and Schnoebelen
2001).

Proposition 14. Let TS = (S,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, decidable ≤ and effective pred-basis. It is possible to
compute a finite basis of Pred∗(I) for any upward-closed set I given via a finite basis.

This proposition can be used to prove that P ⇓x is decidable by exploiting the following
idea: Clearly a process can perform an action α (in any number of steps) iff such a process
is a predecessor of a process which can perform α immediately (i.e. in one step). If one
can show that the set S consisting of those processes which can immediately perform α

is upward closed, previous result allows us to compute effectively a finite pred-basis of
Pred∗(S) and therefore to decide whether a process Q belongs to Pred∗(S): To this aim,
in fact, it is sufficient to decide whether in the (finite) basis there exist a process which
is smaller than Q (this is possible because the quasi-order ≤ is decidable).

In order to develop this idea we first need to perform three steps.
First we have to define a finitely branching, well-structured transition system with

strong compatibility, decidable � and computable Succ. Such a system has already been
obtained in the previous subsection, so we simply use here that system. †.

Next we have to show that when considering the new relation 7→ (used in the finitely
branching semantics) rather than the old one −→ the notion of barb does not change.
This is the content of the following proposition, where we assume that barbs in the new
semantics are defined in the obvious way: We say that P⇓x iff there exists P ′, P ′′, α such
that P 7→∗ P ′ α7→ P ′′ and n(α) = {x}.

† To be more precise, in the transition system here we have to consider PP,dν(P) rather than Deriv(P),

because Deriv(P) does not include all the possible states that we are dealing with (e.g. in the basis).
However the proofs are the same.

N. Busi, M. Gabbrielli, and G. Zavattaro 26

Proposition 15. Let P ∈ CCS!. Then P⇓x iff P ⇓x.

Proof. Analogous to that one of Corollary 1.

The third, and more substantial, step needed to prove that P⇓x (and therefore P ⇓x)
is decidable consist in the definition of an effective pred-basis for our finitely branching,
well-structured transition system. This will be done in the next subsection.

4.4.1. An effective pred-basis for (PP,dν(P), 7→,�)

We start by defining the set of processes Nowα(P) that can immediately perform the
labeled action α and which are constructed by using sequential and bang subprocesses
of P (in the sense made precise by Definition 17).

Definition 21. Let P ∈ CCS!. The set of processes Nowα(P) is defined as {Q ∈
PP,dν(P) | Q

α7→}.

Next we show that this set is upward-closed.

Proposition 16. Let P ∈ CCS!. Then Nowα(P) =↑ Nowα(P) holds.

Proof. Immediate from the definition of �.

We can now provide a finite basis for the previously defined set. This is possible because
the set of sequential and bang subprocesses of a process is finite

Definition 22. Let P ∈ CCS!. The set fbNowα(P) is defined as follows:
fbNowα(P) = {(νx1 . . . xm)Q | Q ∈ Sub(P),m ≤ dν(P), x1 . . . xm ⊆ bn(P),

Q
α7→, n(α) 6∈ {x1, . . . , xm}}

Proposition 17. Let P ∈ CCS! and α 6= τ . Then the set fbNowα(P) is a finite basis
of Nowα(P).

Proof. The set fbNowα(P) is finite by construction and by proposition 11. Moreover
it is also a basis, since if R ∈ Nowα(P) then we can show by induction on the structure
of R that there exists Q ∈ fbNowα(P) such that Q � R.

Using the above definitions and results we can provide a method to construct a finite
basis for the set of predecessors of a given process w.r.t. a transition α7→. The idea is to
first consider sequential and bang processes (for which, as we will show, it is possible
to compute directly a pred-basis) and then consider restricted and parallel processes
(for which we proceed by induction on their syntactical structure). In order to compute
directly the pred-basis for a sequential process Q, we simply observe that given any
transition S

α7→ S′ such that Q � S′, we have that either Q was already present (at
top level) in S or not. In the first case a pred-basis can be obtained by application of
proposition 17 by simply considering the processes Q|R with R ∈ fbNowα(P). In the
second case, the process Q appears at top level only in S′: this means that it is “activated”
by one sequential or bang process, let us call it R. The activation occurs either because
R performs directly a transition labeled with α or because it synchronizes with a parallel

Mathematical Structures in Computer Science 27

process (in the case α = τ). In the first case, it is enough to consider the sequential or
bang subprocesses of P able to activate Q by performing a transition labeled with α, in
the second case it is necessary to consider sequential of bang subprocesses of P able to
activate Q after performing a synchronization with another process in parallel.

Definition 23. Let P ∈ CCS!. Given a process Q ∈ PP,dν(P), we define

basicα(Q) = {Q|R | R ∈ fbNowα(P)} ∪
{R ∈ Sub(P) | ∃R′ : R α7→ R′ ∧Q � R′} ∪
synchbasicα(Q)

where:

synchbasicτ (Q) = {Q1|Q2 | Q1 ∈ Sub(P) ∧Q2 ∈ fbNowα(P)∧
∃Q′1 : Q1

α7→ Q′1 ∧Q � Q′1 }
synchbasicα(Q) = ∅ if α 6= τ

The pred-basis pbα(Q) of a process Q w.r.t. α is defined by induction on the structure
of the process as follows:

pbα(0) = basicα(0)
pbα(α′.Q) = basicα(α′.Q)
pbα(Q1 +Q2) = basicα(Q1 +Q2)
pbα((νx)Q) = basicα((νx)Q′)

∪
{(νx)Q′ | Q′ ∈ pbα(Q) ∧ x 6= n(α)}

pbα(Q1|Q2) = basicα(Q1|Q2)
∪
{Q′1|Q2 | Q′1 ∈ pbα(Q1)}
∪
{Q1|Q′2 | Q′2 ∈ pbα(Q2)}
∪
syncα(Q1, Q2)

pbα(!Q) = basicα(!Q)
syncτ (Q1, Q2) = {Q′1|Q′2 | ∃α ∈ n(P) : Q′1 ∈ pbα(Q1) ∧Q′2 ∈ pbα(Q′2)}
syncα(Q1, Q2) = ∅ if α 6= τ

The above definition provides a procedure to compute a pred-basis of a process as
shown by the following Lemma.

Lemma 3. Let P ∈ CCS! and Q ∈ PP,dν(P). Then pbτ (Q) is a computable finite basis
of ↑ Pred(↑ Q).

Proof. By induction on the structure of Q.

Using the previous Lemma we can obtain the following Theorem.

Theorem 9. Let P ∈ CCS!. Then the transition system (PP,dν(P), 7→,�) is a well-
structured transition system with strong compatibility, decidable � and effective pred-
basis.

N. Busi, M. Gabbrielli, and G. Zavattaro 28

Proof. The first part is the content of Theorem 8 (note that in Theorem 8 Deriv(P)
rather than PP,dν(P) was used. However the proof of such a theorem works also when
considering PP,dν(P)). The second part follows from Lemma 3.

We can now prove the main result of this section following the argument previously
illustrated. First we characterize barbs in terms of predecessors.

Proposition 18. Let P ∈ CCS!. P⇓x iff P ∈ Pred∗(Nowx(P)) or
P ∈ Pred∗(Nowx(P)).

Proof. Immediate by definition of P⇓x, of Pred∗ and by definition 21.

Corollary 4. Let P ∈ CCS!. Then P ↓ x is decidable.

Proof. First observe that from Theorem 9 and Proposition 14 it follows that it is
possible to compute a finite basis of Pred∗(I) for any upward-closed set I specified by
means of a finite basis. Next note that the set Nowα(P) of processe that can immediately
perform a (not silent) move α is upward-closed (Proposition 16) and we provided a finite
basis for it (Proposition 17). Hence, since � is decidable, we can decide whether a given
process Q belongs to Pred∗(Nowα(P)) by verifying if there exists a process in the finite
basis (of Pred∗(Nowα(P))) that is smaller than Q. This and Proposition 18 imply that
P⇓x is decidable and therefore the thesis follows from Proposition 15.

5. Decidability results for CCS∗

We show that the set of processes reachable from a given process P is finite. Hence, all
the properties considered in this paper are decidable in CCS∗.

Definition 24. Reach(P) is the set of terms reachable from P with a sequence of tran-
sitions: Reach(P) = {Q | ∃n ≥ 0, α1, . . . , αn s.t. P

α1−→ . . .
αn−→ Q}.

We provide an upper bound to the number of reachable processes:

Definition 25. The function size on CCS∗ processes is defined as follows:
size(0) = 1 size(α.P) = 1 + size(P)
size(P +Q) = 1 + size(P) + size(Q) size(P |Q) = size(P)× size(Q)
size((νx)P) = size(P) + 1 size(P ∗) = size(P) + 1

In order to prove that size is actually an upper bound to the number of processes
reachable from a given process, we need the following Lemma.

Lemma 4. Let P ∈ CCS∗. For any n > 0, we have that if P ∗ α1−→ . . .
αn−→ Q or

R;P ∗ α1−→ . . .
αn−→ Q with R ∈ Reach(P) then Q = Q′;P ∗ with Q′ ∈ Reach(P).

Proof. We proceed by induction on n.
We divide the base case, i.e. n = 1, in two parts. In the first part we consider P ∗ α1−→ Q.

In this case the transition is inferred by the rule ITER, thus P α1−→ Q′ (hence Q′ ∈
Reach(P)) and Q = Q′;P ∗. In the second part we consider R;P ∗ α1−→ Q (with R ∈
Reach(P)). In this case the transition is inferred by either the rule SEQ1 or SEQ2. If it is

Mathematical Structures in Computer Science 29

SEQ1 it is easy to see that the lemma holds. If it is SEQ2, we have that P ∗ α1−→ Q, hence
we can reason as in the first part.

If n > 1, by inductive hypothesis we have that P ∗ α1−→ . . .
αn−1−→ T

αn−→ Q where
T = Q′;P ∗ with Q′ ∈ Reach(P). If we consider the last transition Q′;P ∗ αn−→ Q we can
prove that the lemma holds simply resorting to the second part of the base case.

Proposition 19. Let P ∈ CCS∗. Then |Reach(P)| ≤ size(P).

Proof. By induction on the structure of P . The unique nontrivial case is P = Q∗ in
the inductive step. In this case we consider the above Lemma that allows us to conclude
that Reach(Q∗) = {Q∗} ∪ {R;Q∗ | R ∈ Reach(Q)}.

As a trivial corollary we have that the set of processes reachable from any process in
CCS∗ is finite.

Corollary 5. Let P ∈ CCS∗. The set Reach(P) is finite.

As a consequence of the above corollary, we obtain that termination, convergence, and
barb are decidable. In fact, in a finite labelled transition system, termination can be
checked verifying the absence of sequences of τ labelled transitions starting from the
initial state that includes a loop, convergence can be checked verifying the presence of
a sequence of τ labelled transitions starting form the initial state and leading to a state
without outgoing τ labelled transitions, and a barb on w can be checked verifying the
presence of a sequence of τ labelled transitions starting from the initial state and leading
to a state with an outgoing transition labelled with w or w. Moreover, we have also that
weak bisimulation is decidable as we can test weak bisimilarity of two finite labelled tran-
sition systems using, e.g., the algorithm proposed by Kanellakis and Smolka (Kanellakis
and Smolka 1990).

6. Conclusion and Related Work

In this paper we have investigated the expressive power of three different constructs for
the modeling of infinite behaviors in process calculi. More precisely, we have considered
a finite fragment of CCS that we have extended with recursive definitions, replication,
and iteration, respectively. We have considered four different properties for processes;
process termination (i.e. all runs are finite), process convergence (i.e. there exists a finite
completed run), barb (a process has the ability to perform visible actions on a specific
channel), and weak bisimulation between processes. For each of these properties we have
proved whether they are decidable or not in the three considered calculi; the results are
reported in the Table presented in the Introduction.

As a consequence of the results we have proved in the paper there exists a strict
hierarchy of expressiveness w.r.t. weak bisimulation among the three considered infinite
operators. In fact, there exist encodings of replication in recursion, and of iteration in
replication that preserve weak bisimulation, while the vice versa does not hold.

To encode replication using recursive definitions, we consider an encoding [[]] which is

N. Busi, M. Gabbrielli, and G. Zavattaro 30

homomorphic except for replication:

[[!P]] = D with D
def
= [[P]]|D

In order to model iteration using replication it is simply necessary to spawn replicas
only on termination of the previous one. This can be done detecting the termination of
the execution of one iteration before activating the subsequent one. The idea is to use
new fresh channel names in such a way that when a process terminates, it communi-
cates termination on the corresponding channel; this triggers the subsequent iteration.
Formally, we consider the encoding [[P]] = (νx)([[P]]x) where [[]]x is an encoding function
indexed on a fresh name x (i.e. x 6∈ fn(P)). The name x indicates the channel on which
termination should be communicated. The indexed encoding is defined as follows:

[[0]]x = x

[[α.P]]x = α.[[P]]x
[[P +Q]]x = [[P]]x + [[Q]]x
[[P |Q]]x = (ν y, z)(y.z.x | [[P]]y | [[Q]]z) y, z 6∈ fn(P) ∪ fn(Q)
[[(νy)P]]x = (νy)[[P]]x
[[P ∗]]x = (νy)(y | !y.([[P]]y + x)) y 6∈ fn(P)

The encodings in the opposite direction do not exist. Replication cannot be encoded in
terms of iteration because weak bisimulation is decidable only under iteration; recursion
cannot be encoded into replication because barb is decidable only under replication and
weak bisimulation preserves barbs.

In a related paper (Giambiagi et al. 2004) Giambagi, Schneider and Valencia consider
other infinite operators in the setting of CCS, namely recursive expressions with static
binding and parameterless constants with dynamic binding. The former is proved to be
as expressive as replication, while the latter is proved to be as expressive as constants
with parameters. In their approach, two calculi are equally expressive if there exists a
weak bisimulation preserving encoding of one calculus in the other, and vice versa. In
their paper they leave as an open problem the existence of a weak bisimulation preserving
encoding from recursion to replication. In (Busi et al. 2004), one of the two conference
papers which this paper is based on, we closed this open problem proving that such an
encoding does not exist.

A comparison of different mechanisms for describing infinite behaviors is reported
in (Nielsen et al. 2002), where the expressive power of several timed concurrent constraint
languages is investigated. In particular, one of the results in that paper shows that the
language with replication is strictly less expressive than the language with recursive
definitions of processes (in case process constants have parameters). Because of the very
different underlying computational model, the proof techniques exploited in that paper
cannot be applied directly in the context of CCS.

The undecidability of weak bisimulation has been proved by Srba (Srba 2003) also
for PA processes. PA is a minimal process algebra comprising sequential and parallel
composition, as well as recursion. Even if PA is minimal, the Srba’s result cannot be
applied in our setting because PA considers sequential composition, which is more general
than our prefix operator. Also the vice versa does not hold (we cannot directly apply our

Mathematical Structures in Computer Science 31

undecidability results to PA) because we consider the restriction operator, which is not
part of PA.
Acknowledgments – We thank Lucia Acciai for pointing out an error in a preliminary
version of the paper, and the anonymous referees for their comments useful to improve
the presentation.

References

N. Busi, M. Gabbrielli, and G. Zavattaro. (2003) Replication vs. Recursive Definitions in Channel

Based Calculi. In Proc. ICALP’03, LNCS 2719, pages 133–144, Springer-Verlag.

N. Busi, M. Gabbrielli, and G. Zavattaro. (2004) Comparing Recursion, Replication, and Iter-

ation in Process Calculi. In Proc. ICALP’04, LNCS 3142, pages 307–319, Springer-Verlag.

A. Finkel and Ph. Schnoebelen. (2001) Well-Structured Transition Systems Everywhere! Theo-

retical Computer Science, 256:63–92.

P. Giambiagi, G. Schneider and F.D. Valencia. (2004) On the Expressiveness of CCS-like Calculi

In Proceedings of FOSSACS 04. LNCS 2987, pages 226–240, Springer-Verlag.

G. Higman. (1952) Ordering by divisibility in abstract algebras. In Proc. London Math. Soc.,

vol. 2, pages 236–366.

P.C. Kanellakis and S.A. Smolka. (1990) CCS expressions, finite state processes, and three

problems of equivalence. Information and Computation, 86(1):43–68.

R. Milner. (1989) Communication and Concurrency. Prentice-Hall.

R. Milner, J. Parrow, D. Walker. A calculus of mobile processes. Journal of Information and

Computation, 100:1–77. Academic Press, 1992.

M. L. Minsky. (1967) Computation: finite and infinite machines. Prentice-Hall, Englewood

Cliffs.

M. Nielsen, C. Palamidessi, and F. D. Valencia. (2002) On the Expressive Power of Temporal

Concurrent Constraint Programming Languages. In Proc. of PPDP’02. ACM Press.

J. C. Shepherdson and J. E. Sturgis. (1963) Computability of recursive functions. Journal of

the ACM, 10:217–255.

J. Srba. (2003) Undecidability of Weak Bisimilarity for PA-Processes. In Proc. of DLT’02,

LNCS 2450, pages 197–208, Springer-Verlag.

