
Under consideration for publication in Math. Struct. in Comp. Science

On the Expressive Power of
Process Interruption and Compensation

M A R I O B R A V E T T I1 † and G I A N L U I G I Z A V A T T A R O1

1 Department of Computer Science, Università di Bologna, {bravetti,zavattar}@cs.unibo.it

Received 27 June 2008; Revised 16 February 2009

The investigation of the foundational aspects of linguistic mechanisms for programming

long-running transactions (such as the scope operator of WS-BPEL) has recently

renewed the interest in process algebraic operators that, due to the occurrence of a

failure, interrupt the execution of one process, replacing it with another one called the

failure handler. We investigate the decidability of termination problems for two simple

fragments of CCS (one with recursion and one with replication) extended with one of

two such operators, the interrupt operator of CSP and the try-catch operator for

exception handling. More precisely, we consider the existential termination problem

(existence of one terminated computation) and the universal termination problem (all

computations terminate). We prove that, as far as the decidability of the considered

problems is concerned, under replication there is no difference between interrupt and

try-catch (universal termination is decidable while existential termination is not), while

under recursion this is not the case (existential termination is undecidable while

universal termination is decidable only for interrupt). As a consequence of our

undecidability results we show the existence of an expressiveness gap between a fragment

of CCS and its extension with either the interrupt or the try-catch operator.

1. Introduction

The investigation of the foundational aspects of the so-called service composition lan-
guages, see, e.g., WS-BPEL (OASIS 2003) and WS-CDL (W3C 2004), has recently at-
tracted the attention of the concurrency theory community. In particular, one of the
main novelties of such languages is concerned with primitives for programming long-
running transactions. These primitives permit, on the one hand, to interrupt processes
when some unexpected failure occurs and, on the other hand, to activate alternative
processes named failure handlers responsible for compensating those activities that, even
if completed, must be undone due to the occurred failure.

Several recent papers propose process calculi that include operators for process failure
handling. Just to mention a few, we recall StAC (Butler and Ferreira 2004), cJoin (Bruni
et al. 2004), cCSP (Butler et al. 2003), πt (Bocchi et al. 2003), SAGAS (Bruni et al. 2005),

† Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

M. Bravetti and G. Zavattaro 2

web-pi (Laneve and Zavattaro 2005), ORC (Misra and Cook 2007), SCC (Boreale et al.
2006), COWS (Lapadula et al. 2007), SOCK (Guidi et al. 2008), and the Conversation
Calculus (Vieira et al. 2008). This huge amount of calculi, including mechanisms for
interruption and failure handling, show evidence of the limitations of usual process calculi
including only communication primitives to adequately support a formal investigation of
long-running transactions, or of fault and compensation handling in languages for service
composition.

In order to perform a formal investigation of these interruption operators we have
decided to concentrate on two of them that we consider well established because taken
either from the tradition of process calculi or from popular programming languages: the
interrupt operator of CSP (Hoare 1985) and the try-catch operator for exception handling
in languages such as C++ or Java. The interrupt operator P4Q executes P until Q
executes its first action; when Q starts executing, the process P is definitely interrupted.
The try-catch operator tryP catchQ executes P , but if P performs a throw action it
is definitely interrupted and Q is executed instead.

We have found these operators particularly useful because, even if very simple, they
are expressive enough to model the typical operators for programming long running
transactions. For instance, we can consider an operator scopex(P, F, C) corresponding to
a simplified version of the scope construct of WS-BPEL. The meaning of this operator is
as follows. The main activity P is executed. In case a fault is raised by P, its execution is
interrupted and the fault handler F is activated. If the main activity P completes, but an
outer scope fails and calls for the compensation of the scope x, the compensation handler
C is executed.

If we assume that the main activity P communicates internal failure with the action
throw (we use the typical notation of process calculi: an overlined action, e.g. a, is com-
plementary with the corresponding non-overlined one, e.g. action a, and complementary
actions allow parallel processes to synchronize) and completion with end, and the re-
quest for compensation corresponds with the action x, we can model the behaviour of
scopex(P, F, C) with both the try-catch:

try P catch F | end.x.C

and the interrupt operator:

P4(f.F) | throw.f | end.x.C

where the vertical bar means parallel composition.
These two operators are apparently very similar as they both allow for the combination

of two processes P and Q, where the first one executes until the second one performs
its first action. Nevertheless, there is an interesting distinguishing feature. In the try-
catch operator, the decision to interrupt the execution of P is taken inside P (by means
of the execution of the throw action), while in the interrupt operator such decision is
taken from Q (by executing any initial action). For instance, in the above example of
modeling of the scopex(P, F, C) operator with the interrupt operator, we had to include
an additional process throw.f which captures the request for interruption coming from
the main activity and forwards it to the fault handler. Another difference between the

On the Expressive Power of Process Interruption and Compensation 3

interrupt try-catch

CCS4
!

CCStc
!

replication existential termination undecidable existential termination undecidable

universal termination decidable universal termination decidable

CCS4rec CCStc
rec

recursion existential termination undecidable existential termination undecidable

universal termination decidable universal termination undecidable

Table 1. Summary of the results

try-catch and the interrupt operators is that the former includes an implicit scoping
mechanism which has no counterpart in the interrupt operator. More precisely, the try-
catch operator defines a new scope for the special throw action which is bound to a
specific instance of exception handler.

Starting from these intuitive and informal evaluations of the differences between such
operators, we have decided to perform a more rigorous and formal investigation. To this
aim, we have considered two restriction-free fragments of CCS (Milner 1989), one with
replication and one with restriction, and we have extended them with either the inter-
rupt or the try-catch operator thus obtaining the four different calculi CCS4! , CCStc

! ,
CCS4rec, and CCStc

rec as depicted in Table 1. We have decided to consider calculi without
restriction, the standard explicit binder operator of CCS, in order to be able to observe
the impact of the implicit binder of try-catch. Moreover, we have decided to consider
separately replication and recursion because in CCS there is an interesting interplay
between these operators and binders as proved in (Busi et al. 2003): in the case of repli-
cation it is possible to compute, given a process P , an upper bound to the nesting depth
of binders for all derivatives of P (i.e. those processes that can be reached from P after
a sequence of transitions). In CCS with recursion, on the contrary, this upper bound
cannot be computed in general.

For the obtained four calculi, we have investigated the decidability of the following ter-
mination problems: existential termination (i.e. there exists a terminated computation)
and universal termination (i.e. all computations terminate). The obtained results are
depicted in Table 1. In order to prove that existential termination is undecidable in the
calculi, we reduce the termination problem for Random Access Machines (RAMs) (Shep-
herdson and Sturgis 1963; Minsky 1967), a well-known Turing complete formalism, to the
existential termination problem in CCS4! and CCStc

! . As replication is a special case of
recursion, we have that the same undecidability result holds also for CCS4rec and CCStc

rec.
As far as universal termination is concerned we proceed as follows. We first prove that
it is undecidable in CCStc

rec by reduction of the RAM termination problem to univer-
sal termination in that calculus. Then we separately prove that universal termination is
decidable in CCStc

! and in CCS4rec. As recursion is more general than replication, the
latter result allows us to conclude that universal termination is decidable also in CCS4! .

The most significant technical contribution of this paper concerns the proof of de-
cidability of universal termination in CCS4rec. This because, while proving decidability

M. Bravetti and G. Zavattaro 4

of universal termination in CCStc
! is done by resorting to the approach in (Busi et al.

2003) based on the existence of an upper bound to the nesting depth of operators in
the derivatives of a process, proving termination in CCS4rec requires to deal with an un-
bounded nesting depth of the interrupt operators. For this reason we need to resort to
a completely different technique which is based on devising a particular transformation
of terms into trees (of unbounded depth) and considering an ordering on such trees. The
particular transformation devised must be “tuned” in such a way that the ordering ob-
tained is: on the one hand a well-quasi-ordering (and to prove this we exploit the Kruskal
Tree theorem (Kruskal 1960)), on the other hand strongly compatible with the opera-
tional semantics. Obtaining and proving the latter result is particularly intricate and it
also requires us to slightly modify the operational semantics of the interrupt operator
in a termination-preserving way and to technically introduce different kinds of trees on
subterms and contexts in order to interpret transitions on trees.

Another interesting consequence of our undecidability results (in particular, the un-
decidability of existential termination) is the existence of an expressiveness gap between
a fragment of CCS (without restriction, relabeling, and with guarded choice) and its
extension with either interrupt or try-catch. In fact, we observe that for this calculus
existential termination is decidable, while this is not the case for its extensions with ei-
ther interrupt or try-catch. Thus, there exists no computable encoding of the considered
interruption operators into this fragment that preserves at least existential termination.

The paper is structured as follows. In Section 2 we define the considered calculi. In
Section 3 we prove the undecidability of existential termination in CCS4! and CCStc

! .
In Section 4 we prove the undecidability of universal termination in CCStc

rec. Section 5
is dedicated to the proof of decidability of universal termination for CCStc

! and CCS4rec.
In Section 6 we evaluate the impact of our results on the evaluation of the expressive
power of the considered calculi. Finally, in Section 7 we draw some concluding remarks.

2. The Calculi

We start by considering the fragment of CCS (Milner 1989) without recursion, restriction,
and relabeling (that we call finite core CCS or simply finite CCS). Then we present the
two infinite extensions with either replication or recursion, the new interrupt operator,
and finally the try-catch operator.

Definition 2.1. (finite core CCS) Let Name, ranged over by x, y, . . ., be a denu-
merable set of channel names. The class of finite core CCS processes is described by the
following grammar:

P ::= 0 | α.P | P + P | P |P α ::= τ | x | x

The term 0 denotes the empty process while the term α.P has the ability to perform the
action α (which is either the unobservable τ action or a synchronization on a channel
x) and then behaves like P . Two forms of synchronization are available, the output x or
the input x. The sum construct + is used to make a choice among the summands while

On the Expressive Power of Process Interruption and Compensation 5

PRE : α.P
α−→ P PAR :

P
α−→ P ′

P |Q α−→ P ′|Q

SUM :

P
α−→ P ′

P +Q
α−→ P ′

COM :

P
α−→ P ′ Q

α−→ Q′

P |Q τ−→ P ′|Q′

Table 2. The transition system for finite core CCS (symmetric rules of PAR and
SUM omitted).

parallel composition | is used to run parallel programs. We denote the process α.0 simply
with α.

For input and output actions α, i.e. α 6= τ , we write α for the complement of α; that
is, if α = x then α = x, if α = x then α = x. The channel names that occur in P are
denoted with n(P). The names in a label α, written n(α), is the set of names in α, i.e.
the empty set if α = τ or the singleton {x} if α is either x or x.

Table 2 contains the set of the transition rules for finite core CCS.

Definition 2.2. (CCS!) The class of CCS! processes is defined by adding the production
P ::= !α.P to the grammar of Definition 2.1.

The transition rule for replication is

!α.P α−→ P |!α.P

Definition 2.3. (CCSrec) We assume a denumerable set of process variables, ranged
over by X. The class of CCSrec processes is defined by adding the productions P ::=
X | recX.P to the grammar of Definition 2.1. In the process recX.P , recX is a binder for
the process variable X and P is the scope of the binder. We consider (weakly) guarded
recursion, i.e., in the process recX.P each occurrence of X (which is free in P) occurs
inside a subprocess of the form α.Q.

The transition rule for recursion is

P{recX.P/X} α−→ P ′

recX.P
α−→ P ′

where P{recX.P/X} denotes the process obtained by substituting recX.P for each free
occurrence of X in P , i.e. each occurrence of X which is not inside the scope of a binder
recX. Note that CCS! is equivalent to a fragment of CCSrec. In fact, the replication
operator !α.P of CCS! is equivalent (according, e.g., to the standard definition of strong
bisimilarity) to the recursive process recX.

(
α.(P |X)

)
.

We now introduce the extensions with the new process interruption operator.

M. Bravetti and G. Zavattaro 6

Definition 2.4. (CCS4! and CCS4rec) The class of CCS4! and CCS4rec processes is
defined by adding the production P ::= P4P to the grammars of Definition 2.2 and
Definition 2.3, respectively.

The transition rules for the interrupt operator are

P
α−→ P ′

P4Q α−→ P ′4Q

Q
α−→ Q′

P4Q α−→ Q′

We complete the list of definitions of the considered calculi presenting the extensions
with the new try-catch operator.

Definition 2.5. (CCStc
! and CCStc

rec) The class of CCStc
! and CCStc

rec processes is
defined by adding the productions P ::= tryP catchP and α ::= throw to the
grammars of Definition 2.2 and Definition 2.3, respectively. The new action throw is
used to model the raising of an exception.

The transition rules for the try-catch operator are

P
α−→ P ′ α 6= throw

tryP catchQ
α−→ tryP ′ catchQ

P
throw−→ P ′

tryP catchQ
τ−→ Q

We use
∏
i∈I Pi to denote the parallel composition of the indexed processes Pi, while

we use
∏
n P to denote the parallel composition of n instances of the process P (if n = 0

then
∏
n P denotes the empty process 0).

In the following we will consider only closed processes, i.e. processes without free oc-
currences of process variables. Given a closed process Q, its internal runs Q −→ Q1 −→
Q2 −→ . . . coincide with sequences of τ labeled transitions, i.e., P −→ P ′ iff P

τ−→ P ′.

We denote with −→+ the transitive closure of −→, while −→∗ is the reflexive and tran-
sitive closure of −→.

A process Q is dead if there exists no Q′ such that Q −→ Q′. We say that a process P
existentially terminates if there exists P ′ s.t. P −→∗ P ′ and P ′ is dead. We say that P
universally terminates if all its internal runs terminate, i.e. the process P cannot give rise
to an infinite computation: formally, P universally terminates iff there exists no family
{Pi}i∈ IN, s.t. P0 = P and Pj −→ Pj+1 for any j. Observe that universal termination
implies existential termination while the vice versa does not hold.

3. Undecidability of Existential Termination in CCS4! and CCStc
!

We prove that CCS4! and CCStc
! are powerful enough to model, at least in a nonde-

terministic way, any Random Access Machine (RAM) (Shepherdson and Sturgis 1963;
Minsky 1967), a well-known register-based Turing powerful formalism.

A RAM (denoted in the following with R) is a computational model composed of a
finite set of registers r1, . . . , rn, that can hold arbitrary large natural numbers, and by

On the Expressive Power of Process Interruption and Compensation 7

a program composed of indexed instructions (1 : I1), . . . , (m : Im), that is a sequence of
simple numbered instructions, like arithmetical operations (on the contents of registers)
or conditional jumps. An internal state of a RAM is given by (i, c1, . . . , cn) where i

is the program counter indicating the next instruction to be executed, and c1, . . . , cn
are the current contents of the registers r1, . . . , rn, respectively. Given a configuration
(i, c1, . . . , cn), its computation proceeds by executing the instructions in sequence, unless
a jump instruction is encountered. The execution stops when an instruction number
higher than the length of the program is reached. Note that the computation of the
RAM proceeds deterministically (it does not exhibit non-deterministic behaviors).

Without loss of generality, we assume that the registers contain the value 0 at the
beginning and at the end of the computation. In other words, the initial configuration is
(1, 0, . . . , 0) and, if the RAM terminates, the final configuration is (i, 0, . . . , 0) with i > m

(i.e. the instruction Ii is undefined). More formally, we indicate by (i, c1, . . . , cn) →R

(i′, c′1, . . . , c
′
n) the fact that the configuration of the RAM R changes from (i, c1, . . . , cn)

to (i′, c′1, . . . , c
′
n) after the execution of the i-th instruction (→∗R is the reflexive and

transitive closure of →R).
The RAM instructions are of two possible formats:

— (i : Succ(rj)): adds 1 to the contents of register rj ;
— (i : DecJump(rj , s)): if the contents of register rj is not zero, then decreases it by 1

and goes to the next instruction, otherwise jumps to instruction s.

Our encoding is nondeterministic because it introduces computations which do not follow
the expected behavior of the modeled RAM. However, all these computations are infinite.
This ensures that, given a RAM, its modeling has a terminating computation if and only
if the RAM terminates. This proves that existential termination is undecidable.

In this section and in the next one devoted to the proof of the undecidability results,
we reason up to a structural congruence ≡ in order to rearrange the order of parallel
composed processes and to abstract away from the terminated processes 0. We define
≡ as the least congruence relation satisfying the usual axioms P |Q ≡ Q|P , P |(Q|R) ≡
(P |Q)|R, and P |0 ≡ P .

Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m : Im). We
model separately registers and instructions.

The program counter is modeled with a message pi indicating that the i-th instruction
is the next to be executed. For each 1 ≤ i ≤ m, we model the i-th instruction (i : Ii)
of R with a process which is guarded by an input operation pi. Once activated, the
instruction performs its operation on the registers and then updates the program counter
by producing pi+1 (or ps in case of jump).

Formally, for any 1 ≤ i ≤ m, the instruction (i : Ii) is modeled by [[(i : Ii)]] which is a
shorthand notation for the following processes:

[[(i : Ii)]] : !pi.(incj .loop | pi+1) if Ii = Succ(rj)

[[(i : Ii)]] : !pi.
(
τ.(loop | decj .loop.loop.pi+1) +
τ.zeroj .ack.ps

)
if Ii = DecJump(rj , s)

It is worth noting that every time an increment operation is performed, a process loop

M. Bravetti and G. Zavattaro 8

is spawned. This process will be removed by a corresponding decrement operation. The
modeling of the DecJump(rj , s) instruction internally decides whether to decrement or
to test for zero the register.

In case of decrement, if the register is empty the instruction deadlocks because the
register cannot be actually decremented. Nevertheless, before trying to decrement the
register a process loop is generated. As we will discuss in the following, the presence of this
process prevents the encoding from terminating. If the decrement operation is actually
executed, two instances of process loop are removed, one instance corresponding to the
one produced before the execution of the decrement, and one instance corresponding to
a previous increment operation.

In case of test for zero, the corresponding register will have to be modified as we
will discuss below. As this modification on the register requires the execution of several
actions, the instruction waits for an acknowledgment before producing the new program
counter ps.

We now show how to model the registers using either the interrupt or the try-catch
operators. In both cases we exploit the following idea. Every time the register rj is
incremented, a decj process is spawned which permits the subsequent execution of a
corresponding decrement operation. In case of test for zero on the register rj , we will
exploit either the interrupt or the try-catch operators in order to remove all the active
processes decj , thus resetting the register. If the register is not empty when it is reset,
the computation of the encoding does not reproduce the RAM computation any longer.
Nevertheless, such “wrong” computation surely does not terminate, thus we can con-
clude that we faithfully model at least the terminating computations. Divergence in case
of “wrong” reset is guaranteed by the fact that if the register is not empty, k instances
of decj processes are removed with k > 0, and k instances of the process loop (previ-
ously produced by the corresponding k increment operations) will never be removed. As
discussed above, the presence of loop processes prevents the encoding from terminating.
This is guaranteed by considering, e.g., the following divergent process

LOOP : loop.(l | !l.l)

Formally, we model each register rj , when it contains cj , with one of the following
processes denoted with [[rj = cj]]

4 and [[rj = cj]]
tc:

[[rj = cj]]
4 :

(
!incj .decj |

∏
cj
decj

)
4
(
zeroj .nrj .ack

)
[[rj = cj]]

tc : try
(
!incj .decj |

∏
cj
decj | zeroj .throw

)
catch

(
nrj .ack

)
It is worth observing that, when a test for zero is performed on the register rj , an
output operation nrj is executed before sending the acknowledgment to the corresponding
instruction. This action is used to activate a new instance of the process [[rj = 0]], as the
process modeling the register rj is removed by the execution of either the interrupt or the
try-catch operators. The activation of new instances of the process modeling the registers
is obtained simply considering, for each register rj , (one of) the two following processes

!nrj .[[rj = 0]]4 !nrj .[[rj = 0]]tc

On the Expressive Power of Process Interruption and Compensation 9

We are now able to define formally our encoding of RAMs as well as its properties.

Definition 3.1. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Let also Γ be either 4 or tc. Given the configuration (i, c1, . . . , cn)
of R we define

[[(i, c1, . . . , cn)]]ΓR =
pi | [[(1 : I1)]] | . . . | [[(m : Im)]] |

∏∑n

j=1
cj
loop | LOOP |

[[r1 = c1]]Γ | . . . | [[rn = cn]]Γ | !nr1.[[r1 = 0]]Γ | . . . | !nrn.[[rn = 0]]Γ

the encoding of the RAM R in either CCS4! or CCStc
! (taking Γ = 4 or Γ = tc,

respectively). The processes [[(i : Ii)]], LOOP , and [[rj = cj]]
Γ are as defined above.

The following proposition states that every step of computation of a RAM can be mim-
icked by the corresponding encoding. On the other hand, the encoding could introduce
additional computations. The proposition also states that all these added computations
are infinite.

Proposition 3.2. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Let also Γ be either 4 or tc. Given a configuration (i, c1, . . . , cn) of
R, we have that, if i > m and cj = 0 for each j, with 1 ≤ j ≤ n, then [[(i, c1, . . . , cn)]]ΓR
is a dead process, otherwise:

1 if (i, c1, . . . , cn)→R (i′, c′1, . . . , c
′
n) then we have [[(i, c1, . . . , cn)]]ΓR →+ [[(i′, c′1, . . . , c

′
n)]]ΓR

2 if [[(i, c1, . . . , cn)]]ΓR −→ Q1 −→ Q2 −→ · · · −→ Ql is a, possibly zero-length, internal
run of [[(i, c1, . . . , cn)]]ΓR then one of the following holds:

— there exists k, with 1 ≤ k ≤ l, such thatQk ≡ [[(i′, c′1, . . . , c
′
n)]]ΓR, with (i, c1, . . . , cn)→R

(i′, c′1, . . . , c
′
n);

— Ql −→+ [[(i′, c′1, . . . , c
′
n)]]ΓR, with (i, c1, . . . , cn)→R (i′, c′1, . . . , c

′
n);

— Ql does not existentially terminate.

Proof. First of all, if i > m and ci = 0, ∀1 ≤ i ≤ n then [[(i, c1, . . . , cn)]]ΓR is obviously a
dead process because no loop process is included among the parallel processes composing
[[(i, c1, . . . , cn)]]ΓR and all other processes are stuck on inputs that cannot be triggered.

If, instead, i > m and there exists i, with 1 ≤ i ≤ n, such that ci > 0, then
[[(i, c1, . . . , cn)]]ΓR can only perform a unique reduction: the one originated by the synchro-
nization with the divergent process LOOP . Thus both statements 1 and 2 are trivially
satisfied.

Otherwise, if i ≤ m, let us suppose (i, c1, . . . , cn) →R (i′, c′1, . . . , c
′
n). We have two

cases:

— If Ii is a Succ(rj) instruction the process [[(i, c1, . . . , cn)]]ΓR may perform a reduction
sequence composed of two reduction steps that leads to [[(i′, c′1, . . . , c

′
n)]]ΓR: the first re-

duction is caused by the synchronization on pi, the second one by the synchronization
on incj . Every process occurring in such a sequence has at most an alternative reduc-
tion: the synchronization with the divergent process LOOP . Thus both statements 1
and 2 are satisfied.

M. Bravetti and G. Zavattaro 10

— If Ii is a DecJump(rj , s) instruction we have two subcases depending on cj = 0 or
cj > 0.

– If cj = 0 then [[(i, c1, . . . , cn)]]ΓR may perform a reduction sequence composed of
six or seven reduction steps (six in the case Γ = tc, seven in the case Γ = 4) that
leads to [[(i′, c′1, . . . , c

′
n)]]ΓR: the first reduction is caused by the synchronization on

pi, the second one by the internal τ action in the righthand side of the choice in the
encoding of DecJump(rj , s), the third one by the synchronization on zeroj , then,
in the case Γ = tc, the fourth one by the execution of throw inside the encoding of
the rj register, in the case Γ = 4, the fourth and fifth one by the synchronization
on zj and stopj inside the encoding of the rj register; finally the last two reductions
are caused by the synchronization on nrj and ack. Apart from the process reached
by the first reduction step, every process occurring in such a sequence has at most
an alternative reduction: the synchronization with the divergent process LOOP .
Concerning the process reached by the first reduction step we have, possibly,
the alternative reduction above plus another alternative reduction: the reduction
caused by the internal τ action in the lefthand side of the choice in the encoding of
DecJump(rj , s). Such a reduction leads to a process where an additional instance
of the process loop is produced and, since synchronization on decj cannot occur
(because cj = 0), such a process can perform a unique reduction: the one originated
by the synchronization with the divergent process LOOP . Thus both statements
1 and 2 are satisfied.

– If cj > 0 then [[(i, c1, . . . , cn)]]ΓR may perform a reduction sequence composed of
five reduction steps that leads to [[(i′, c′1, . . . , c

′
n)]]ΓR: the first reduction is caused

by the synchronization on pi, the second one by the internal τ action in the
lefthand side of the choice in the encoding of DecJump(rj , s), the third one by
the synchronization on decj , the fourth and fifth one by the synchronization on
loop (two times). Apart from the process reached by the first reduction step,
every process occurring in such a sequence has at most an alternative reduction:
the synchronization with the divergent process LOOP . Concerning the process
reached by the first reduction step we have, possibly, the alternative reduction
above plus another alternative reduction: the reduction caused by the internal τ
action in the righthand side of the choice in the encoding of DecJump(rj , s). Such
a reduction leads to a process that may perform a reduction sequence composed
of two or three reduction steps (two in the case Γ = tc, three in the case Γ = 4)
that leads to a process with the following structure of its parallel components: the
number of loop processes is strictly greater than the sum of the numbers of the deck
processes for all 1 ≤ k ≤ n. Such a sequence is composed by a first reduction caused
by the synchronization on zeroj and then: in the case Γ = tc, a second reduction
caused by the execution of throw inside the encoding of the rj register, in the case
Γ = 4, a second and third reduction caused by the synchronization on zj and
stopj inside the encoding of the rj register. Note that in both cases an interruption
(or exception) is generated that, since cj > 0, removes at least an occurrence of
a decj process (without removing a corresponding number of occurrences of loop

On the Expressive Power of Process Interruption and Compensation 11

processes). It is easy to observe that the process reached by such a sequence does
not existentially terminate: the possibility to reach a dead process is crucially
conditioned on the capability to remove all loop processes (the only thing that can
prevent the LOOP divergent process from being activated by synchronization) and
the removal of one loop process can only be done by the encoding after that one
decj process is correspondingly removed. Finally, every process occurring in the
last reduction sequence has at most an alternative reduction: the synchronization
with the divergent process LOOP . Thus both statements 1 and 2 are satisfied.

Thus, we have the following corollary.

Corollary 3.3. Let R be a RAM. We have that the RAM R terminates if and only if
[[(1, 0, . . . , 0)]]ΓR existentially terminates (for both Γ = 4 and Γ = tc).

Proof. If the RAM R terminates then it is immediate to derive, by induction on the
length of the computation of the RAM, from Proposition 3.2 (first part plus statement
1) that [[(1, 0, . . . , 0)]]ΓR can reach a dead state.

Concerning the opposite implication, we show that if the RAM R does not termi-
nate then [[(1, 0, . . . , 0)]]ΓR does not existentially terminate. By contradiction, if from
[[(1, 0, . . . , 0)]]ΓR we could reach a dead process this would violate Proposition 3.2 (state-
ment 2). This is shown by induction on the length of an assumed reduction sequence
from the encoding of a configuration reached by the non-terminating RAM to the dead
process.

This proves that existential termination is undecidable in both CCS4! and CCStc
! . As

replication is a particular case of recursion, we have that the same undecidability result
holds also for CCS4rec and CCStc

rec.

4. Undecidability of Universal Termination in CCStc
rec

In this section we prove that also universal termination is undecidable in CCStc
rec. This

result follows from the existence of a deterministic encoding of RAMs satisfying the
following stronger soundness property: a RAM terminates if and only if the corresponding
encoding universally terminate.

The basic idea of the new modeling is to represent the number cj , stored in the reg-
ister rj , with a process composed of cj nested try-catch operators. This approach can
be adopted in CCStc

rec because standard recursion admits recursion in depth, while it
was not applicable in CCStc

! because replication supports only recursion in width. By
recursion in width we mean that the recursively defined term can expand only in parallel
as, for instance, in recX.(P |X) (corresponding to the replicated process !P) where the
variable X is an operand of the parallel composition operator. By recursion in depth,
we mean that the recursively defined term expands also under other operators such as,
for instance, in recX.(try (P |X) catchQ) (corresponding to an unbounded nesting of
try-catch operators).

M. Bravetti and G. Zavattaro 12

Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m : Im).
We start presenting the modeling of the instructions which is similar to the encoding
presented in the previous section. Note that here the assumption on registers to all have
value 0 in a terminating configuration is not needed. We encode each instruction (i : Ii)
with the process [[(i : Ii)]], which is a shorthand for the following process

[[(i : Ii)]] : recX.pi.(incj .pi+1|X) if Ii = Succ(rj)
[[(i : Ii)]] : recX.pi.

(
(zeroj .ps + decj .ack.pi+1)|X

)
if Ii = DecJump(rj , s)

As in the previous section, the program counter is modeled by the process pi which
indicates that the next instruction to execute is (i : Ii). The process [[(i : Ii)]] simply
consumes the program counter process, then updates the registers (resp. performs a
test for zero), and finally produces the new program counter process pi+1 (resp. ps).
Notice that in the case of a decrement operation, the instruction process waits for an
acknowledgment before producing the new program counter process. This is necessary
because the register decrement requires the execution of several operations.

The register rj , that we assume initially empty, is modeled by the process [[rj = 0]]
which is a shorthand for the following process (to simplify the notation we use also the
shorthand Rj defined below)

[[rj = 0]] : recX.
(
zeroj .X + incj .tryRj catch (ack.X)

)
Rj : recY.

(
decj .throw + incj .tryY catch (ack.Y)

)
The process [[rj = 0]] is able to react either to test for zero requests or increment oper-
ations. In the case of increment requests, a try-catch operator is activated. Inside this
operator a recursive process is installed which reacts to either increment or decrement
requests. In the case of an increment, an additional try-catch operator is activated (thus
increasing the number of nested try-catch). In the case of a decrement, a failure is raised
which removes the active try-catch operator (thus decreasing the number of nested try-
catch) and emits the acknowledgment required by the instruction process. When the
register returns to be empty, the outer recursion reactivates the initial behavior.

Formally, we have that the register rj with contents cj > 0 is modeled by the following
process composed of the nesting of cj try-catch operators

[[rj = cj]] : try(
try(
· · ·

tryRj catch (ack.Rj)
· · ·
)

catch (ack.Rj)
)

catch (ack.[[rj = 0]])

where Rj is as defined above. We are now able to define formally the encoding of RAMs
in CCStc

rec.

Definition 4.1. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and

On the Expressive Power of Process Interruption and Compensation 13

registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn) we define with

[[(i, c1, . . . , cn)]]R = pi | [[(1 : I1)]] | . . . | [[(m : Im)]] | [[r1 = c1]] | . . . | [[rn = cn]]

the encoding of the RAM R in CCStc
rec.

The new encoding faithfully reproduces the behavior of a RAM as stated by the following
proposition. In the following Proposition we use the notion of deterministic internal run
defined as follows: an internal run P0 −→ P1 −→ . . . −→ Pl is deterministic if for every
process Pi, with i < l, Pi+1 is the unique process Q such that Pi −→ Q.

Proposition 4.2. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Given a configuration (i, c1, . . . , cn) of R, we have that, if i > m then
[[(i, c1, . . . , cn)]]R is a dead process, otherwise:

1 if (i, c1, . . . , cn)→R (i′, c′1, . . . , c
′
n) then we have [[(i, c1, . . . , cn)]]R →+ [[(i′, c′1, . . . , c

′
n)]]R

2 there exists a non-zero length deterministic internal run [[(i, c1, . . . , cn)]]ΓR −→ Q1 −→
Q2 −→ · · · −→ [[(i′, c′1, . . . , c

′
n)]]ΓR such that (i, c1, . . . , cn)→R (i′, c′1, . . . , c

′
n).

Proof. First of all, if i > m then [[(i, c1, . . . , cn)]]R is obviously a dead process because
all processes (that compose it by means of parallel) are stuck on inputs that cannot be
triggered.

Otherwise, if i ≤ m, let us suppose (i, c1, . . . , cn) →R (i′, c′1, . . . , c
′
n). We have two

cases:

— If Ii is a Succ(rj) instruction the process [[(i, c1, . . . , cn)]]R proceeds deterministically
by performing a reduction sequence composed of two reduction steps that leads to
[[(i′, c′1, . . . , c

′
n)]]R: the first reduction is caused by the synchronization on pi, the second

one by the synchronization on incj . Thus both statements 1 and 2 are satisfied.
— If Ii is a DecJump(rj , s) instruction we have two subcases depending on cj = 0 or

cj > 0.

– If cj = 0 then [[(i, c1, . . . , cn)]]R proceeds deterministically by performing a reduc-
tion sequence composed of two reduction steps that leads to [[(i′, c′1, . . . , c

′
n)]]R:

the first reduction is caused by the synchronization on pi, the second one by the
synchronization on zeroj . Thus both statements 1 and 2 are satisfied.

– If cj > 0 then [[(i, c1, . . . , cn)]]R proceeds deterministically by performing a reduc-
tion sequence composed of four reduction steps that leads to [[(i′, c′1, . . . , c

′
n)]]R:

the first reduction is caused by the synchronization on pi, the second one by the
synchronization on decj , the third one by the execution of throw inside the inner-
most try − catch clause in the encoding of the rj register and the fourth one by
the synchronization on ack. Thus both statements 1 and 2 are satisfied.

Thus, we have the following corollary.

Corollary 4.3. Let R be a RAM. We have that the RAM R terminates if and only if
[[(1, 0, . . . , 0)]]R universally terminates.

M. Bravetti and G. Zavattaro 14

Proof. The proof of this corollary is the same as that of Corollary 4.3 referring to
Proposition 4.2 instead of Proposition 3.2.

This proves that universal termination is undecidable in CCStc
rec.

5. Decidability of Universal Termination in CCStc
! and CCS4rec

In the RAM encoding presented in the previous section natural numbers are represented
by chains of nested try-catch operators, that are constructed by exploiting recursion. In
this section we prove that both recursion and try-catch are strictly necessary. In fact,
if we consider replication instead of recursion or the interrupt operator instead of the
try-catch operator, universal termination turns out to be decidable.

These results are based on the theory of well-structured transition systems (Finkel
and Schnoebelen 2001). We start recalling some basic definitions and results concerning
well-structured transition systems, that will be used in the following.

A quasi-ordering, also known as pre-order, is a reflexive and transitive relation.

Definition 5.1. A well-quasi-ordering (wqo) is a quasi-ordering ≤ over a set S such
that, for any infinite sequence s0, s1, s2, . . . in S, there exist indexes i < j such that
si ≤ sj .

Transition systems can be formally defined as follows.

Definition 5.2. A transition system is a structure TS = (S,→), where S is a set of states
and→⊆ S×S is a set of transitions. We write Succ(s) to denote the set {s′ ∈ S | s→ s′}
of immediate successors of S. TS is finitely branching if all Succ(s) are finite.

Well-structured transition systems, defined as follows, provide the key tool to decide
properties of computations.

Definition 5.3. A well-structured transition system with strong compatibility is a tran-
sition system TS = (S,→), equipped with a quasi-ordering ≤ on S, such that the two
following conditions hold:

1 well-quasi-ordering: ≤ is a well-quasi-ordering, and
2 strong compatibility: ≤ is (upward) compatible with →, i.e., for all s1 ≤ t1 and

all transitions s1 → s2, there exists a state t2 such that t1 → t2 and s2 ≤ t2.

In the following we use the notation (S,→,≤) for transition systems equipped with a
quasi-ordering ≤.

The following theorem (a special case of a result in (Finkel and Schnoebelen 2001))
will be used to obtain our decidability results.

Theorem 5.4. Let (S,→,≤) be a finitely branching, well-structured transition system
with strong compatibility, decidable ≤ and computable Succ. The existence of an infinite
computation starting from a state s ∈ S is decidable.

The proof of decidability of universal termination in CCS4rec is not done on the original
transition system, but on a termination equivalent one. The new transition system does

On the Expressive Power of Process Interruption and Compensation 15

not eliminate interrupt operators during the computation; in this way, the nesting of
interrupt operators can only grow and does not shrink. As we will see, this transformation
will be needed for proving that the ordering that we consider on processes is strongly
compatible with the operational semantics. Formally, we define the new transition system
α7−→ for CCS4rec considering the transition rules of Definition 2.3 (where α7−→ is substituted

for α−→) plus the following rules

P
α7−→ P ′

P4Q α7−→ P ′4Q

Q
α7−→ Q′

P4Q α7−→ Q′40

Notice that the first of the above rules is as in Definition 2.4, while the second one is
different because it does not remove the 4 operator.

As done for the standard transition system, we assume that the reductions 7−→ of the
new semantics corresponds to the τ–labeled transitions τ7−→. Also for the new semantics,
we say that a process P universally terminates if and only if all its computations are
finite, i.e. it cannot give rise to an infinite sequence of reductions 7−→.

To prove the equivalence of the semantics of CCS4rec presented in Section 2 with the
alternative semantics presented in this section with respect to termination, we need to
define the following congruence between processes:

Definition 5.5. We define ≡T as the least congruence relation satisfying the following
axiom:

P40 ≡T P

The equivalence result (equivalence with respect to termination) can be easily proved
with the help of the following propositions:

Proposition 5.6. Let P,Q ∈ CCS4rec with P ≡T Q. If P α−→ P ′ then there exists Q′

such that Q α−→ Q′ and P ′ ≡T Q′.

Proof. By induction on the proof of the relation P ≡T Q.

Proposition 5.7. Let P,Q ∈ CCS4rec with P ≡T Q. If P α7−→ P ′ then there exists Q′

such that Q α7−→ Q′ and P ′ ≡T Q′.

Proof. By induction on the proof of the relation P ≡T Q.

Proposition 5.8. Let P ∈ CCS4rec. If P α7−→ P ′ then there exists P ′′ such that P α−→ P ′′

and P ′ ≡T P ′′.

Proof. By induction on the proof of the derivation P
α7−→ P ′.

Proposition 5.9. Let P ∈ CCS4rec. If P α−→ P ′ then there exists P ′′ such that P α7−→ P ′′

and P ′ ≡T P ′′.

Proof. By induction on the proof of the derivation P
α−→ P ′.

M. Bravetti and G. Zavattaro 16

Corollary 5.10. Let P ∈ CCS4rec. Then P universally terminates according to the
semantics −→ iff P universally terminates according to the new semantics 7−→.

We now separate in two subsections the proofs of decidability of universal termination
in CCStc

! and in CCS4rec.

5.1. Universal termination is decidable in (CCStc
! ,−→)

The proof for CCStc
! is just a reformulation of the proof of decidability of universal

termination in CCS without relabeling and with replication instead of recursion reported
in (Busi et al. 2008).

We define for (CCStc
! ,−→) a quasi-ordering on processes which turns out to be a

well-quasi-ordering compatible with −→. Thus, exploiting Theorem 5.4 we show that
universal termination is decidable.

Definition 5.11. Let P ∈ CCStc
! . With Deriv(P) we denote the set of processes reach-

able from P with a sequence of reduction steps:

Deriv(P) = {Q | P −→ ∗Q}

To define the wqo on processes we need the following structural congruence.

Definition 5.12. We define ≡ as the least congruence relation satisfying the following
axioms: P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R P |0 ≡ P

Now we are ready to define the quasi-ordering on processes:

Definition 5.13. Let P,Q ∈ CCStc
! . We write P � Q iff there exist n, P ′, R, P1, . . . , Pn,

Q1, . . . , Qn, S1, . . . , Sn such that P ≡ P ′|
∏n
i=1 tryPi catchSi, Q ≡ P ′|R|

∏n
i=1

tryQi catchSi, and Pi � Qi for i = 1, . . . , n.

The above definition can be seen as a definition by induction on the nesting depth of
try-catch operators. In the base case, we have n = 0, thus P � Q if and only if Q contains
the processes in P plus other processes in parallel. In the inductive case, P � Q if each
process tryPi catchSi occurring in P has a corresponding process tryQi catchSi with
Pi � Qi.

Theorem 5.14. Let P ∈ CCStc
! . Then the transition system (Deriv(P),−→,�) is a

finitely branching well-structured transition system with strong compatibility, decidable
� and computable Succ.

Proof. In the following we show how to precisely obtain the proof of this result from
the analogous proof of decidability of universal termination in CCS without relabeling
and with replication instead of recursion reported in (Busi et al. 2008).

First we need to introduce some auxiliary definitions. Let P ∈ CCStc
! . With dtc(P)

On the Expressive Power of Process Interruption and Compensation 17

we denote the maximum number of nested try-catch operators in process P :

dtc(0) = 0
dtc(α.P) = dtc(!α.P) = dtc(P)
dtc(P +Q) = dtc(P |Q) = max({dtc(P), dtc(Q)})
dtc(tryP catchQ) = max({1 + dtc(P), dtc(Q)})

The set of sequential subprocesses of P is defined as:

Sub(0) = {0}
Sub(α.P) = {α.P} ∪ Sub(P)
Sub(!α.P) = {!α.P} ∪ Sub(P)
Sub(P +Q) = {P +Q} ∪ Sub(P) ∪ Sub(Q)
Sub(P |Q) = Sub(P) ∪ Sub(Q)
Sub(tryP catchQ) = Sub(P) ∪ Sub(Q)

Finally, let catch(P) be the set of the processes used as handlers of exceptions in try −
catch operators occurring in P :

catch(P) = {S | ∃Q : tryQ catchS occurs in P}

The proof of the theorem is then performed by using exactly the same formal machinery
as that used in (Busi et al. 2008) for proving the corresponding Theorem 8 of (Busi et
al. 2008), that includes Definition 17, Lemma 2, Propositions 10, 11, 12, 13, Corollary 2
and Theorems 6, 7 of (Busi et al. 2008), with the following replacements. The formal
machinery of (Busi et al. 2008) listed above (statements plus proofs) must be considered
where: all occurrences of CCS! in (Busi et al. 2008) are replaced by CCStc

! , ≡w by ≡,
bn(P) by catch(P), dν by dtc, 7−→ by −→, (νxi)Q by tryQ catchSi, xi by Si and,
finally, in the proof of Theorem 8 of (Busi et al. 2008) we must replace the justification
for the statement that the transition system of P is finitely branching with the following
one. The fact that (Deriv(P),−→) is finitely branching derives from an inspection of the
transition rules (in particular of the operational rule for the !α.P operator presented in
Section 2 of this paper).

Corollary 5.15. Let P ∈ CCStc
! . The universal termination of process P is decidable.

5.2. Universal termination is decidable in (CCS4rec, 7−→)

According to the ordering defined in Definition 5.13, we have that P � Q if Q has
the same structure of nesting of try-catch operators and it is such that in each point
of this nesting Q contains at least the same processes (plus some other processes in
parallel). This is a well-quasi-ordering in the calculus with replication because, given P ,
it is possible to compute an upper bound to the number of nestings in any process in
Deriv(P). In the calculus with recursion this upper bound does not exist as recursion
permits to generate nesting of unbounded depth (this e.g. is used in the deterministic
RAM modeling of Section 4). For this reason, we need to move to a different ordering
inspired by the ordering on trees used by Kruskal in (Kruskal 1960). This allows us to

M. Bravetti and G. Zavattaro 18

use the Kruskal Tree theorem that states that the trees defined on a well-quasi-ordering
form a well-quasi-ordering.

The remainder of this section is devoted to the definition of how to associate trees to
processes of CCS4rec, and how to extract from these trees an ordering for (CCS4rec, 7−→)
which turns out to be a wqo.

We take E to be the set of (open) terms of CCS4rec and P to be the set of CCS4rec
processes, i.e. closed terms. Pseq is the subset of P of terms P such that either P = 0 or
P = α.P1 or P = P1 + P2 or P = recX.P1, with P1, P2 ∈ E . Let Pint = {P4Q | P,Q ∈
P}.

Given a set E, we denote with E∗ the set of finite sequences of elements in E. We use
“;” as a separator for elements of a set E when denoting a sequence w ∈ E∗, ε to denote
the empty sequence and len(w) to denote the length of a sequence w. Finally, we use wi
to denote the i− th element in the sequence w (starting from 1) and e ∈ w to stand for
e ∈ {wi | 1 ≤ i ≤ len(w)}.

Definition 5.16. Let P ∈ P. We define the flattened parallel components of P , FPAR(P),
as the sequence over Pseq ∪ Pint given by

FPAR(P1|P2) = FPAR(P1);FPAR(P2)
FPAR(P) = P if P ∈ Pseq ∪ Pint

Given a sequence w ∈ E∗ we define the sequence w′ ∈ E′∗ obtained by filtering w with
respect to E′ ⊆ E as follows. For 1 ≤ i ≤ len(k), w′i = wki

, where k ∈ {1, . . . , len(w)}∗
is such that k is strictly increasing, i.e. j′ > j implies kj′ > kj , and, for all h, wh ∈
E′ if and only if h ∈ k. In the following we call FINT (P) the sequence obtained by
filtering FPAR(P) with respect to Pint and FSEQ(P) the sequence obtained by filtering
FPAR(P) with respect to Pseq.

In the following we map processes into ordered trees (with both a left to right ordering
of children at every node and the usual child to parent ordering). We use IN to denote
the set of positive natural numbers, i.e. IN = {1, 2, . . .}.

Definition 5.17. A tree t over a set E is a partial function from IN∗ to E such that
dom(t) is finite, is closed with respect to sequence prefixing and is such that ~n;m ∈ dom(t)
and m′ ≤ m, with m′ ∈ IN, implies ~n;m′ ∈ dom(t).

Example 5.18. (ε, l) ∈ t denotes that the root of the tree has label l ∈ E; (1; 2, l) ∈ t
denotes that the second son of the first son of the root of the tree t has label l ∈ E.

Let Pinth = {4Q | Q ∈ P} be a set representing interruption handlers.

Definition 5.19. Let P ∈ P. We define the tree of P , TREE(P), as the minimal tree
TREE(P) over P∗seq∪Pinth (and minimal auxiliary tree TREEodd(P ′) over P∗seq∪Pinth,
with P ′ ∈ Pint) satisfying

(ε, FSEQ(P)) ∈ TREE(P)
(~n, l) ∈ TREEodd(FINT (P)i) implies (i;~n, l) ∈ TREE(P)

On the Expressive Power of Process Interruption and Compensation 19

!R

a+b; c

recX.(a.X | c)

!S

a; c

Fig. 1. Tree t associated to process P of Example 5.20.

Fig. 2. Function ϕ from dom(t) to dom(t′) of Example 5.22 strictly preserves order inside

trees.

(ε,4Q) ∈ TREEodd(P ′4Q)
(~n, l) ∈ TREE(P ′) implies (1;~n, l) ∈ TREEodd(P ′4Q)

Example 5.20. The tree t of the process P = (a+ b)|
(
(recX.(a.X|c))4R

)
|c|((a|c)4S)

for some processes R and S is t = {(ε, a+b; c), (1,4R), (1; 1, recX.(a.X|c)), (2,4S), (2; 1,
a; c)}. The tree t is depicted in Fig. 1.

In the following, we define the ordering between processes by resorting to the ordering
on trees used in (Kruskal 1960) applied to the particular trees obtained from processes by
our transformation procedure. In particular, in order to do this we introduce the notion
of injective function that strictly preserves order inside trees: a possible formal way to
express homeomorphic embedding between trees, used in Kruskal’s theorem (Kruskal
1960), that we take from (Simpson 1985).

We take ≤T to be the ancestor pre-order relation inside trees, defined by: ~n ≤T ~m iff
~m is a prefix of ~n (or ~m = ~n). Moreover, we take ∧T to be the minimal common ancestor
of a pair of nodes, i.e. ~n1 ∧T ~n2 = min{~m| ~n1 ≤T ~m ∧ ~n2 ≤T ~m}.

Definition 5.21. We say that an injective function ϕ from dom(t) to dom(t′) strictly
preserves order inside trees iff for every ~n, ~m ∈ dom(t) we have:

— ~n ≤T ~m implies ϕ(~n) ≤T ϕ(~m)
— ϕ(~n ∧T ~m) = ϕ(~n) ∧T ϕ(~m)

Example 5.22. Consider tree t of Example 5.20 and a tree t′ such that dom(t′) =

M. Bravetti and G. Zavattaro 20

!R

a+b; c

recX.(a.X | c) d

!S

!S’ !S’’

f a; c; e

!R

a+b; c

recX.(a.X | c)

!S

a; c

Fig. 3. Function ϕ shows that P � Q for P and Q of Example 5.24.

{ε, 1, 1; 1, 2, 2; 1, 2; 1; 1, 2; 1; 1; 1, 2; 1; 2, 2; 1; 2; 1)}. The injective function ϕ = {(ε, ε), (1, 1),
(1; 1, 1; 1), (2, 2), (2; 1, 2; 1; 2; 1)}, depicted in Fig. 2, strictly preserves order inside trees.

Definition 5.23. Let P,Q ∈ P. P � Q iff there exists an injective function ϕ from
dom(TREE(P)) to dom(TREE(Q)) such that ϕ strictly preserves order inside trees
and for every ~n ∈ dom(ϕ):

— either there exists R ∈ P such that TREE(P)(~n) = TREE(Q)(ϕ(~n)) = 4R
— or TREE(P)(~n), TREE(Q)(ϕ(~n)) ∈ P∗seq and, if len(TREE(P)(~n)) > 0, there ex-

ists an injective function f from {1, . . . , len(TREE(P)(~n))} to {1, . . . , len(TREE(Q)
(ϕ(~n)))} such that for every i ∈ dom(f): TREE(P)(~n)i = TREE(Q)(ϕ(~n))f(i).

Notice that � is a quasi-ordering in that it is obviously reflexive and it is immediate to
verify, taking into account the two conditions for the injective function in the definition
above, that it is transitive.

Example 5.24. Consider process P = (a+b)|
(
(recX.(a.X|c))4R

)
|c|((a|c)4S) of Exam-

ple 5.20 and its associated tree t. Morever consider processQ = (a+b)|
(
(recX.(a.X|c))4R

)
|c|
(
(d|(f4S′′))|((a|c|e)4S′)4S

)
, for some processes R,S, S′ and S′′, and its associated

tree t′ = {(ε, a+ b; c), (1,4R), (1; 1, recX.(a.X|c)), (2,4S), (2; 1, d), (2; 1; 1,4S′), (2; 1; 1;
1, f), (2; 1; 2,4S′′), (2; 1; 2; 1, a; c; e)}. The domain of t′ is the same as in Example 5.22,
hence the function ϕ = {(ε, ε), (1, 1), (1; 1, 1; 1), (2, 2), (2; 1, 2; 1; 2; 1)} strictly preserves
order inside trees. It is easy to observe (see Fig. 3) that ϕ also maps exception handlers
into identical exception handlers and sequences of sequential terms into sequences of
sequential terms which include a larger (multi)set of sequential terms, hence P � Q.

We redefine on the transition system (CCS4rec, 7−→) the function Deriv(P) that asso-
ciates to a process the set of its derivatives.

Definition 5.25. Let P ∈ CCS4rec. With Deriv(P) we denote the set of processes
reachable from P with a sequence of reduction steps:

Deriv(P) = {Q | P 7−→∗ Q}

We are now ready to state our main result, that can be proved by simultaneously

On the Expressive Power of Process Interruption and Compensation 21

exploiting Higman’s Theorem on sequences (Higman 1952) (also known as Highman’s
Lemma) and Kruskal’s Theorem on trees (Kruskal 1960).

Theorem 5.26. Let P ∈ CCS4rec. Then the transition system (Deriv(P), 7−→,�) is a
finitely branching well-structured transition system with strong compatibility, decidable
� and computable Succ.

Proof. See Section 5.2.1.

Corollary 5.27. Let P ∈ CCS4rec. The termination of process P is decidable.

As replication is a particular case of recursion, we have that the same decidability
result holds also for CCS4! .

5.2.1. Proving Theorem 5.26 We first extend the definition of sequential terms, of inter-
ruption terms, and of FPAR(P) to open terms. Eseq is the subset of E of terms P such
that either P = 0 or P = α.P1 or P = P1 + P2 or P = recX.P1, with P1, P2 ∈ E . Let
Eint = {P4Q | P,Q ∈ E}. We extend the definition of FPAR(P) to open terms P ∈ E
by replacing the second clause in the definition of FPAR(P) with:

FPAR(P) = P if P ∈ Eseq ∪ Eint ∪ {X|X ∈ V ars}

where V ars is the denumerable set of variables X in the syntax of E terms.
A context is a term PX of E that includes a single occurrence of the free variable X

(and possibly other free variables). A flat parallel context is a term P iX of E such that
P iX is a context and the sequence w ∈ (Eint ∪ {X})∗ obtained by filtering FPAR(P iX)
with respect to Eint ∪ {X} is such that wi = X.

Definition 5.28. Let P ∈ P. We define the context tree of P , CONX(P), as the min-
imal tree CONX(P) over contexts PX (and minimal auxiliary tree CONodd

X (P ′) over
contexts PX , with P ′ ∈ Pint) satisfying

(ε,X) ∈ CONX(P)
(~n, P ′X) ∈ CONodd

X (P ′), with P ′ ∈ Pint, implies (i;~n, P iX{P ′X/X}) ∈ CONX(P iX{P ′/X})

(ε,X) ∈ CONodd
X (P ′4Q)

(~n, P ′X) ∈ CONX(P ′) implies (1;~n, P ′X4Q) ∈ CONodd
X (P ′4Q)

We define the subterm tree of P , SUBT (P), as the tree satisfying the following con-
dition. (~n, P ′) ∈ SUBT (P) iff there exists a context PX such that (~n, PX) ∈ CONX(P)
and P ′ is the term such that PX{P ′/X} = P . Similarly, (~n, P ′) ∈ SUBT odd(P), with
P ∈ Pint, iff there exists a context PX such that (~n, PX) ∈ CONodd

X (P) and P ′ is the
term such that PX{P ′/X} = P .

Example 5.29. Consider process P = (a+b)|
(
(recX.(a.X|c))4R

)
|c|((a|c)4S) of Exam-

ple 5.20. The tree CONX(P) is {(ε,X), (1, (a+b)|X|c|((a|c)4S)), (1; 1, (a+b)|
(
X4R

)
|c|

((a|c)4S)), (2, (a + b)|
(
(recX.(a.X|c))4R

)
|c|X), (2; 1, (a + b)|

(
(recX.(a.X|c))4R

)
|c|

M. Bravetti and G. Zavattaro 22

(a+b)|X|c|((a|c)!S)

X

(a+b)|(X!R)|c|((a|c)!S)

(a+b)|(recX.(a.X|c))!R)|c|X

(a+b)|(recX.(a.X|c))!R)|c|(X!S)

(a|c)

P

((a|c)!S) (recX.(a.X|c))!R)

(recX.(a.X|c))

Fig. 4. CONX(P) and SUBT (P) for the process

P = (a + b)|
(
(recX.(a.X|c))4R

)
|c|((a|c)4S) of Example 5.29.

(X4S))}. The tree SUBT (P) is {(ε, P), (1, (recX.(a.X|c))4R), (1; 1, recX.(a.X|c)),
(2, (a|c)4S), (2; 1, a|c)}. Both trees are depicted in Fig. 4.

In the following we will use TREE~n(P) to stand for TREE(P)(~n), CON~n(P) to stand
for CON(P)(~n) and SUBT ~n(P) to stand for SUBT (P)(~n).

Proposition 5.30. It holds that:

— (~n, l) ∈ TREE(P) iff (~n, P ′) ∈ SUBT (P) and we have: l = FSEQ(P ′) if len(~n) is
even or zero; l = 4Q, with P ′ = P ′′4Q for some P ′′, if len(~n) is odd.

— (~n, l) ∈ TREEodd(P), with P ∈ Pint, iff (~n, P ′) ∈ SUBT odd(P) and we have: l = 4Q,
with P ′ = P ′′4Q for some P ′′, if len(~n) is even or zero; l = FSEQ(P ′) if len(~n) is
odd.

Proof. First of all, notice that we have: FINT (P)i = P ′ iff there exists a flat parallel
context P iX such that P iX{P ′/X} = P and P ′ ∈ Pint. By exploiting this we can rewrite
the second clause in the definition of TREE(P) as

(~n, l) ∈ TREEodd(P ′), with P ′ ∈ Pint, implies (i;~n, l) ∈ TREE(P iX{P ′/X})

which makes it similar to the corresponding clause in the definition of CONX(P).
The statement is then trivially proved to hold by induction on len(~n), with len(~n) = 0

as the base case.

In the following we use rchn(t) to denote the number of children of the root of a
(non-empty) tree t. We have rchn(t) = max{k|k ∈ dom(t)}.

Definition 5.31. Let w,w′ ∈ E∗. We define the sequence obtained by inserting w′ in w
at position i, with 1 ≤ i ≤ len(w) + 1, as the sequence w′′ with length len(w) + len(w′)
such that:

— ∀1 ≤ n ≤ i− 1. w′′n = wn
— ∀1 ≤ n ≤ len(w′). w′′i−1+n = w′n

On the Expressive Power of Process Interruption and Compensation 23

— ∀i ≤ n ≤ len(w). w′′len(w′)+n = wn

Let t, t′ be trees over E such that (ε, w) ∈ t and (ε, w′) ∈ t′ with w,w′ ∈ E′∗ ⊆ E; we
define the tree obtained by inserting t′ in t at position (i, j), with 1 ≤ i ≤ len(w) + 1 and
1 ≤ j ≤ rchn(t) + 1, as the minimal tree t′′ such that:

— (ε, w′′) ∈ t′′ where w′′ is obtained by inserting w′ in w at position i

— ∀~n, 1 ≤ m ≤ j − 1. (m;~n, l) ∈ t implies (m;~n, l) ∈ t′′
— ∀~n, 1 ≤ m ≤ rchn(t′). (m;~n, l) ∈ t′ implies (j − 1 +m;~n, l) ∈ t′′
— ∀~n, j ≤ m ≤ rchn(t). (m;~n, l) ∈ t implies (rchn(t′) +m;~n, l) ∈ t′′

Finally, we define the sequence obtained from w ∈ E∗ by removing the i− th element,
with 1 ≤ i ≤ len(w), written w − i, as the sequence w′ ∈ E∗ such that len(w′) =
len(w)− 1, ∀1 ≤ n ≤ i− 1. w′n = wn and ∀i+ 1 ≤ n ≤ len(w). w′n−1 = wn.

We now prove that � satisfies the strong compatibility property with respect to the
transition system (CCS4rec, 7−→). The proof exploits the following lemma.

Lemma 5.32. SUBT ~n(P) α7−→ P ′ implies P α7−→ CON~n
X(P){P ′/X}

Proof. We show that:

— SUBT ~n(P) α7−→ P ′ implies P α7−→ CON~n
X(P){P ′/X}

— SUBT odd(P)(~n) α7−→ P ′ implies P α7−→ CONodd
X (P)(~n){P ′/X}

by induction on len(~n), where 0 is the base case. The inductive step is worked out as
a trivial consequence of the fact that: P α7−→ P ′ implies P4Q α7−→ P ′4Q and P |Q α7−→
P ′|Q.

Theorem 5.33. Let P,Q, P ′ ∈ P. If P α7−→ P ′ and P � Q then there exists Q′ ∈ P
such that Q α7−→ Q′ and P ′ � Q′.

Proof. The proof is by induction on depth(TREE(P))/2, where for any tree t we take
depth(t) = max{len(~n)|~n ∈ dom(t)} and it is easy to see that for every P ∈ P we have
that depth(TREE(P)) is even (because ~n ∈ dom(TREE(P)) and len(~n) odd implies
~n; 1 ∈ dom(TREE(P))).

Therefore, in the following, we prove the assertion for any P having a certain
depth(TREE(P))/2: the base case of the induction is obtained by taking depth(TREE(P))
/2 = 0.

Since P � Q, there exists an injective strictly order-preserving ϕ such that the labels of
TREE(P) and TREE(Q) are correctly related. In particular, we have that there exists
an injection f from {1, . . . , len(TREEε(P))} to {1, . . . , len(TREEϕ(ε)(Q))} such that
TREEε(P)i = TREEϕ(ε)(Q)f(i). We have two cases:

— Either P α7−→ P ′ is inferred from the move P1
α7−→ P ′1 of a single process P1 ∈

FPAR(P).
— Or α = τ and P

α7−→ P ′ is inferred from the moves P1
a7−→ P ′1 and P2

a7−→ P ′2 of two
processes P1, P2 ∈ FPAR(P).

In the following we develop the first case; then we will show that the second one can
be treated as a consequence of the first one. We have three subcases:

M. Bravetti and G. Zavattaro 24

1 P1 ∈ FSEQ(P)
2 P1 = P24P3, for some P2, P3, and P1

α7−→ P ′1 is inferred from a move P3
α7−→ P ′1 of

the process to the right-hand side of 4.
3 P1 = P24P3, for some P2, P3, and P1

α7−→ P ′1 is inferred from a move P2
α7−→ P ′2 of

the process to the left-hand side of 4.

where the second and third one can be obtained only if depth(TREE(P))/2 > 0.
The proof for the three subcases follows.

1. Let us assume that P1 is the process at the j− th position in the sequence FSEQ(P)
and that the first process of Pint to the right of P1 in the sequence FPAR(P) is at
the k − th position in the sequence FINT (P).
First of all we notice that TREE(P ′) is obtained by inserting TREE(P ′1) in the tree
TREE(P)− {(ε, FSEQ(P))} ∪ {(ε, FSEQ(P)− j)} at position (j, k).
From the existence of the function f above we derive P1 ∈ TREEϕ(ε)(Q). Let
Q1 = SUBTϕ(ε)(Q). Let us assume that P1 is the process at the j′ − th position
in the sequence FSEQ(Q1) and that the first process of Pint to the right of P1 in
the sequence FPAR(Q1) is at the k′ − th position in the sequence FINT (Q1). We
have Q1

α7−→ Q′1, where TREE(Q′1) is obtained by inserting TREE(P ′1) in the tree
TREE(Q1)− {(ε, FSEQ(Q1))} ∪ {(ε, FSEQ(Q1)− j)} at position (j′, k′).
By using Lemma 5.32 we derive Q α7−→ CON

ϕ(ε)
X (Q){Q′1/X}. Moreover, we consider

ϕ′ =

{(ε, ϕ(ε))} ∪
{(m;~n, ϕ(ε); z; ~n′)|1 ≤ m ≤ k − 1∧

((ϕ(ε); z; ~n′ = ϕ(m;~n) ∧ ϕ(m;~n) ≤ k′ − 1)∨
(ϕ(ε); z − (rchn(t′); ~n′ = ϕ(m;~n) ∧ ϕ(m;~n) ≥ k′))} ∪

{(k − 1 +m;~n, ϕ(ε); k′ − 1 +m;~n)|(m;~n) ∈ dom(t′)} ∪
{(rchn(t′) +m;~n, ϕ(ε); z; ~n′)|k ≤ m ≤ rchn(t)∧

((ϕ(ε); z; ~n′ = ϕ(m;~n) ∧ ϕ(m;~n) ≤ k′ − 1)∨
(ϕ(ε); z − (rchn(t′); ~n′ = ϕ(m;~n) ∧ ϕ(m;~n) ≥ k′))},

where t = TREE(P) and t′ = TREE(P ′1). ϕ′ is a strictly order-preserving injection
such that the labels of P ′ and Q′ = CON

ϕ(ε)
X (Q){Q′1/X} are correctly related; hence

P ′ � Q′. In particular the existence of an injection f ′ from {1, . . . , len(TREEε(P ′))}
to {1, . . . , len(TREEϕ

′(ε)(Q′))} such that TREEε(P ′)i = TREEϕ
′(ε)(Q′)f ′(i) derives

from the existence of the injection f between the sequences labeling the nodes ε and
ϕ(ε) = ϕ′(ε) of P and Q: f ′ is obtained from f by removing the pair (j, j′) (corre-
sponding to the removal of P1 from both sequences) and by simply accounting for the
insertion of the same sequence FSEQ(P ′1) in both sides. Notice that the preservation
of the minimal common ancestor property holds because, when, in TREE(P ′), i; 1;~n
nodes, with k ≤ i ≤ k + rchn(TREE(P ′)), are involved and are considered together
with nodes j; 1; ~m for some j < k ∨ j > k + rchn(TREE(P ′)), ~m, the minimal com-
mon ancestor is the root ε. Moreover, the nodes ϕ′(i; 1;~n) = ϕ′(ε); i− k+ k′; 1;~n and
ϕ′(j) have ϕ′(ε) as a minimal common ancestor, by construction of TREE(Q′) from
TREE(Q) and because the injection ϕ preserves the ancestor pre-order.

On the Expressive Power of Process Interruption and Compensation 25

2. Let us assume that P1 is the process at the i-th position in the sequence FINT (P).
We have TREEi(P) = TREEϕ(i)(Q) = 4P3; hence SUBTϕ(i)(Q) = Q14P3 for
some Q1 ∈ P and SUBTϕ(i)(Q) α7−→ P ′340.
By using Lemma 5.32 we derive Q α7−→ CON

ϕ(i)
X (Q){P ′140/X}. Moreover, we con-

sider ϕ′ = ϕ−{(i; 1;~n, ~m)|~n, ~m ∈ IN∗}∪{(i; 1;~n, ϕ(i); 1;~n)|~n ∈ dom(TREE(P ′1))}. ϕ′
is a strictly order-preserving injection such that the labels of P ′ andQ′ = CON

ϕ(i)
X (Q)

{P ′140/X} are correctly related; hence P ′ � Q′. Notice that the preservation of the
minimal common ancestor property holds because, when, in TREE(P ′), i; 1;~n nodes
are involved and are considered together with nodes j; 1; ~m for some j 6= i, ~m, the
minimal common ancestor is the root ε. Since the nodes i, j have ε as a minimal
common ancestor, ϕ(i) and ϕ(j) must have ϕ(ε) as a minimal common ancestor.
Moreover, since the injection ϕ preserves the ancestor pre-order and ϕ′ differs from
ϕ just over nodes ϕ(i; 1; ~n′) for some ~n′, ϕ(i; 1;~n) and ϕ(j; 1; ~m) must have ϕ′(ε) as
a minimal common ancestor.

3. Let us assume that P1 is the process at the i-th position in the sequence FINT (P).
We have that ϕ′ = {(~n, ~m)|ϕ(i; 1;~n) = ϕ(i; 1); ~m} (that makes sense because ϕ pre-
serves the ancestor pre-order) is a strictly order-preserving injection such that the
labels of P2 and SUBTϕ(i;1)(Q) are correctly related; hence P2 � SUBTϕ(i;1)(Q).
By applying the induction hypothesis we derive that there exists Q′1 ∈ P such that
SUBTϕ(i;1)(Q) α7−→ Q′1 and P ′2 � Q′1. Hence, there exists a strictly order-preserving
injection ϕ′′ such that the labels of TREE(P ′2) and TREE(Q′1) are correctly related.
By using Lemma 5.32 we derive Q α7−→ CON

ϕ(i;1)
X (Q){Q′1/X}. Moreover, we consider

ϕ′′′ = ϕ− {(i; 1;~n, ~m)|~n, ~m ∈ IN∗} ∪ {(i; 1;~n, ϕ(i; 1); ~m)|ϕ′′(~n) = ~m}. ϕ′′′ is a strictly
order-preserving injection such that the labels of P ′ and Q′ = CON

ϕ(i;1)
X (Q){Q′1/X}

are correctly related; hence P ′ � Q′. Notice that the preservation of the minimal
common ancestor property holds because, when, in TREE(P ′), i; 1;~n nodes are in-
volved and are considered together with nodes j; 1; ~m for some j 6= i, ~m, the minimal
common ancestor is the root ε. Since the nodes i, j have ε as a minimal common
ancestor, ϕ(i) and ϕ(j) must have ϕ(ε) as a minimal common ancestor. Moreover,
since the injection ϕ preserves the ancestor pre-order and ϕ′′′ differs from ϕ just over
nodes ϕ(i; 1; ~n′) for some ~n′, ϕ(i; 1;~n) and ϕ(j; 1; ~m) must have ϕ′′′(ε) as a minimal
common ancestor.

The case α = τ and P
α7−→ P ′ is inferred from the moves P1

a7−→ P ′1 and P2
a7−→ P ′2

of two processes P1, P2 at different positions in FPAR(P). Let us suppose that P1 is at
position i in FPAR(P) and that P2 is at position j in FPAR(P).

Consider the flat parallel context P iX such that P iX{P1/X} = P and P jX such that

P jX{P2/X} = P . We have that P a7−→ P iX{P ′1/X} and that P a7−→ P jX{P ′2/X}. Therefore,

by the same proof as in the previous case, there exists Q′′ and Q′′′ such that Q a7−→ Q′′

and Q
a7−→ Q′′′. Let us now observe that, no matter which of the three cases above

for the inference of a move of P applies, in the proof above we identify Q1 and Q2 in
FPAR(SUBTϕ(ε)(Q)) such that Q1

a7−→ Q′1 and Q2
a7−→ Q′2. Moreover Q1 and Q2 are

at different positions in FPAR(SUBTϕ(ε)(Q)) because:

M. Bravetti and G. Zavattaro 26

— if Q1 and Q2 are both Pseq terms (subcase 1 above), then the injective function f

yields Q1 and Q2 at different positions because P1, P2 are at different positions;
— if Q1 and Q2 are both Pint terms (subcases 2 and 3) then we have that, called

k the position of P1 in FINT (P) and h the position of P2 in FINT (P) (obvi-
ously k 6= h), Q1 is the term at position k′, where k′;~n = ϕ(k) for some ~n, in
FINT (SUBTϕ(ε)(Q)) and Q2 is the term at position h′, where h′; ~m = ϕ(h) for
some ~m, in FINT (SUBTϕ(ε)(Q)) and we must have k′ 6= h′ because otherwise ϕ
would not preserve the minimal common ancestor of nodes k and h (that is the root
ε).

For proving the assertion we need to use another property of the terms Q′ and injective
functions ϕ′ (and related injective function f ′ relating TREEε(P ′) and TREEϕ(ε)(Q′))
showing that P ′ � Q′ built in the previous case (subcases 1, 2 and 3). Consider a term
in FSEQ(P) that is not P1 and let z be its position in FSEQ(P). If m is the position
that such a term assumes in FSEQ(P iX{P ′1/X}) then f ′(m) is the position that the
f(z)-th term in FSEQ(SUBTϕ(ε)(Q)) (that is not Q1 because f is injective) assumes in
FSEQ(Qi

′

X{Q′1/X}), where Qi
′

X such that Q = CON
ϕ(ε)
X (Q){Qi′X{Q1/X}/X}. Similarly,

consider a term in FINT (P) that is not P1 and let z be its position in FINT (P). If
m is the position that such a term assumes in FINT (P iX{P ′1/X}) then m′ such that
m′;~n = ϕ′(m), for some ~n, is the position that the z′-th term in FINT (SUBTϕ(ε)(Q)),
with z′;~n = ϕ(z) (that is not Q1 because ϕ is injective and preserves the minimal common
ancestor), assumes in FINT (Qi

′

X{Q′1/X}).
Since the two processes P1, P2 are at different positions in FPAR(P), then P

a7−→
P iX{P ′1/X}

a7−→ P ′, where the two moves are inferred from the moves P1
a7−→ P ′1 and

P2
a7−→ P ′2, respectively. From the first move, by building a corresponding move for Q to

Q′ and an injective function ϕ′ (and related injective function f ′ relating TREEε(P ′) and
TREEϕ(ε)(Q′)) as in the previous case, we haveQ a7−→ Q′ ≡ CONϕ(ε)

X (Q){Qi′X{Q′1/X}/X},
inferred from a move Q1

a7−→ Q′1 of Q1. Moreover, if P2 ∈ Pseq and m is the position that
term P2 (that is inside P iX) assumes in FSEQ(P iX{P ′1/X}) then f ′(m) is the position
that Q2 (that is inside Qi

′

X) assumes in FSEQ(Qi
′

X{Q′1/X}). If, instead, P2 ∈ Pint and
m is the position term P2 (that is inside P iX) assumes in FINT (P iX{P ′1/X}) then m′

such that m′;~n = ϕ′(m), for some ~n, is the position that Q2 (that is inside Qi
′

X) assumes
in FINT (Qi

′

X{Q′1/X}). From the second move, we have that we can similarly build a
move from CON

ϕ(ε)
X (Q){Qi′X{Q′1/X}/X} to CONϕ(ε)

X (Q){Q′′/X}, that is inferred from
a move Q2

a7−→ Q′2 of Q2 (because of the correspondence between P2 and Q2 in ϕ′ de-
tailed above), and an injective function ϕ′′ showing that P ′ � CON

ϕ(ε)
X (Q){Q′′/X}.

Therefore, since Q1 and Q2 are in different positions in FPAR(SUBTϕ(ε)(Q)), then
SUBTϕ(ε)(Q) τ7−→ Q′′; hence, by Lemma 5.32, Q τ7−→ CON

ϕ(ε)
X (Q){Q′′/X}.

In order to prove that � is a wqo. we exploit both Higman’s Theorem that allows us
to lift a wqo on a set S to a corresponding wqo on S∗, i.e. the set of finite sequences on
S, and Kruskal’s Tree Theorem that allows us to lift a wqo on a set S to a corresponding
wqo on trees over S.

On the Expressive Power of Process Interruption and Compensation 27

Definition 5.34. Let S be a set and ≤ a wqo over S. The relation ≤∗ over S∗ is defined
as follows. Let t, u ∈ S∗, with t = t1t2 . . . tm and u = u1u2 . . . un. We have that t ≤∗ u
iff there exists an injection f from {1, 2, . . . ,m} to {1, 2, . . . , n} such that ti ≤ uf(i) and
1 ≤ f(1) < . . . < f(m) ≤ n.

Note that relation ≤∗ is a quasi-ordering over S∗.

Theorem 5.35. [Higman] Let S be a set and ≤ a wqo over S. Then, the relation ≤∗ is
a wqo over S∗.

Definition 5.36. Let S be a set and ≤ a wqo over S. The relation ≤tree on the set of
trees over S is defined as follows. Let t, u be trees over S. We have that t ≤tree u iff there
exists a strictly order-preserving injection ϕ from dom(t) to dom(u) such that for every
~n ∈ dom(ϕ) we have that t(~n) ≤ u(ϕ(~n)).

Note that relation ≤tree is a quasi-ordering for the set of trees over S.

Theorem 5.37. [Kruskal] Let S be a set and ≤ a wqo over S. Then, the relation ≤tree
is a wqo on the set of trees over S.

Moreover, the following trivial proposition will be used to show that � is a wqo.

Proposition 5.38. Let S be a finite set. Then equality is a wqo over S.

In order to apply Kruskal, we need first to define a wqo on the set of labels of the
trees associated to the derivatives of a process P . To prove this result, we show that
these labels are sequences of elements taken from a finite domain (then we can apply
Proposition 5.38 and Theorem 5.35). We first introduce some auxiliary notation.

Given a process P ∈ CCS4rec, we define the set Pseq(P) of the sequential subprocesses
of P and the set Pinth(P) of the interruption handlers that are included in P as follows:

Pseq(P) = {Q ∈ Pseq | Q ∈ ClSub(P)}
Pinth(P) = {4Q ∈ Pinth | ∃R ∈ P : R4Q ∈ ClSub(P)}

where ClSub(P) is the set of the closures of the subterms of P , i.e. P ′ ∈ ClSub(P) if
the closed term P ′ is obtained from a subterm P ′′ of P by replacing each free variable
in P ′′ with the corresponding binding recursion inside P . For instance, if P = recX.

a.recY.(b.X + c.Y) we have that, e.g., b.
(
recX.a.recY.(b.X + c.Y)

)
+ c.recY.

(
b.
(
recX.a.

recY.(b.X+c.Y)
)
+c.Y

)
is in ClSub(P) in that it is obtained as the closure of the subterm

b.X + c.Y of P . Note that, obviously, (since we always consider variable definitions as
they appear inside P that does not change during the replacements) the order of variable
replacement is not important given that we replace variables until we reach a closed
term: if we replace variable definitions considering them from inner to outer scopes, i.e.
the definition of Y before the definition of X in the example above, we do not have to
repeat replacements for the same variable.

It is immediate to observe that, since subterms of a term are finitely many and for
each term there is exactly one closure of it, both Pseq(P) and Pinth(P) are always finite.

M. Bravetti and G. Zavattaro 28

Proposition 5.39. Given a process P ∈ CCS4rec, the sets Pseq(P) and Pinth(P) are
finite.

Proof. By induction on the structure of P .

We now define the set PP of those processes whose sequential subprocesses and inter-
ruption handlers either occur in P or are 0 and 40, respectively. The latter is needed to
include terms derived from P due to the (modified) semantics of the 4 operator (see the
termination preserving transformation of the semantics at the beginning of Section 5).

Definition 5.40. Let P be a process of CCS4rec. With PP we denote the set of CCS4rec
processes defined by

PP = {Q ∈ CCS4rec | Pseq(Q) ⊆
(
Pseq(P) ∪ {0}

)
∧ Pinth(Q) ⊆

(
Pinth(P) ∪ {40}

)
}

Note that for every P , the set PP is infinite as there are no restrictions on the number
of instances of the sequential subprocesses or of the interrupts. Nevertheless, we have
that � is a wqo on the set PP :

Theorem 5.41. Let P ∈ CCS4rec. The relation � is a wqo over PP .

Proof. We prove the theorem showing the existence of a wqo v such that for every
Q,R ∈ PP , if Q v R then also Q � R.
The new relation v is defined as follows. Given Q,R ∈ PP , we have that Q v R if and
only if TREE(Q) (=∗)tree TREE(R) where (=∗)tree is a relation on trees obtained from
the identity over Pseq(P)∪Pinth(P) lifted to sequences according to Definition 5.34, and
then lifted to trees according to Definition 5.36. As Pseq(P)∪Pinth(P) is finite, we have
that =∗ is a wqo (Proposition 5.38 and Higman’s Theorem 5.35). Thus, by Kruskal’s
Theorem 5.37, we have that also (=∗)tree is a wqo.
It remains to prove that v implies �. To prove this, we show that given Q v R then also
the conditions reported in the Definition 5.23 are satisfied by Q and R; thus also Q � R.
Let us consider Q v R; then there exists an order preserving injective function ϕ from
dom(TREE(Q)) to dom(TREE(R)) such that for every ~n ∈ dom(ϕ) we have that
TREE(Q)(~n) =∗ TREE(R)(ϕ(~n)). There are two possible cases. Either TREE(Q)(~n) ∈
Pinth or TREE(Q)(~n) ∈ P∗seq.
— In the first case we have that TREE(Q)(~n) = TREE(R)(ϕ(~n)) = 4S for some

S ∈ P (thus the first item of Definition 5.23 holds).
— In the second case we have that TREE(Q)(~n) =∗ TREE(R)(ϕ(~n)), i.e., there ex-

ists an injective function f from {1, . . . , len(TREE(Q)(~n))} to {1, . . . , len(TREE(R)
(ϕ(~n)))} such that 1 ≤ f(1) < . . . < f(len(TREE(Q)(~n))) ≤ len(TREE(R)(ϕ(~n)))
and TREE(Q)(~n)i = TREE(R)(ϕ(~n))f(i) (thus the second item of Definition 5.23,
where we simply require that f is injective, holds).

In order to prove that (CCS4rec, 7−→) is a well-structured transition system we simply
have to show that for every P the derivatives of P , i.e. Deriv(P), is a subset of PP . This
follows from the following proposition.

On the Expressive Power of Process Interruption and Compensation 29

Proposition 5.42. Let P ∈ CCS4rec and Q ∈ PP . If Q α7−→ Q′ then Q′ ∈ PP .

Proof. By induction on the proof of transition Q
α7−→ Q′.

Corollary 5.43. Let P ∈ CCS4rec. We have that Deriv(P) ⊆ PP .

We now complete the proof of decidability of termination in (CCS4rec, 7−→).

Proof. of Theorem 5.26 The fact that (Deriv(P),−→) is finitely branching derives
from an inspection of the transition rules taking into account the weak guardedness
constraint in recursions. Strong compatibility was proved in Theorem 5.33. The fact that
� is a wqo on Deriv(P) is a consequence of Corollary 5.43 and Theorem 5.41.

6. Interpretation of the results

A first comment concerns the computational power of the considered calculi. In the
proof of the undecidability results we have considered RAMs which is a Turing-complete
formalism in the classical setting, i.e., given a partial recursive function there is a cor-
responding RAM program which computes it. This means that whenever the function
is defined, the corresponding RAM program is guaranteed to complete its computation
yielding the correct value.

We have shown that it is possible to encode deterministically any RAM in CCStc
rec;

thus we can conclude that the calculus is Turing complete according to the following
criterion.

— Given a partial recursive function with a given input there is a corresponding process
such that:

– if the function is defined for the input then all computations of the process ter-
minate and make the corresponding output available (it is sufficient to count the
nesting depth of the try-catch operator in the subprocess of the final process that
represents the output register);

– if the function is not defined for the input then all computations of the process
do not terminate.

For the other considered calculi, the decidability of universal termination allows us
to conclude that the calculi are not Turing complete according to the above criterion.
Nevertheless, in the proof of the undecidability of existential termination in these cal-
culi, we show that RAMs can be encoded in such a way that at least the terminating
computations respect RAM computations. We can conclude that these calculi satisfy a
weaker criterion.

— Given a partial recursive function with a given input there is a corresponding process
such that:

– if the function is defined for the input then there exists at least one computation
that terminates and moreover all computations that terminate make the corre-
sponding output available;

M. Bravetti and G. Zavattaro 30

– if the function is not defined for the input then all computations of the process
do not terminate.

The difference with respect to the above criterion for Turing completeness is in the first
item: when the function is defined, the corresponding process may have some computa-
tions that do not terminate. We can refer to this weaker criterion for Turing universality
as weak Turing completeness. We can conclude that CCStc

rec is Turing complete while
CCS4! , CCStc

! , and CCS4rec are only weakly Turing complete.
We now compare the computational strength of the interrupt and of the try-catch op-

erators with respect to calculi in which such operators are not present. In particular we
consider a fragment of CCS (called GCCS in the following) obtained removing restric-
tion, relabeling, and assuming that the operands of a choice are always prefixed processes
as in α1.P1 +α2.P2. It is well known that the processes of GCCS can be translated into
strongly bisimilar finite Petri-nets (Goltz 1988). As existential and universal termina-
tion are decidable for finite Petri-nets (see, e.g., (Esparza and Nielsen 1994) for a survey
about decidable properties in Petri-nets), and because strong bisimilarity preserves both
existential and univeral termination (i.e., an existentially —resp. universally— terminat-
ing process cannot be strongly bisimilar to a non existentially —resp. non universally—
terminating process), we can conclude that both termination problems are decidable in
GCCS (in fact, it is sufficient to check universal —resp. universal— termination on the
Petri-nets obtained by removing all transitions different from those representing τ ac-
tions). Thus, GCCS is not weakly Turing complete. As all the encodings of RAMs that
we have presented in this paper exploit only guarded choice, we can conclude that if we
extend GCCS with the interrupt operator we obtain a weakly Turing complete calculus,
and if we extend GCCS with try-catch we reach Turing completeness. In the light of this
last observation we can conclude that:

— there exists no computable encoding of the interrupt operator in GCCS that preserves
existential termination;

— there exists no computable encoding of the try-catch operator inGCCS that preserves
either existential or universal termination;

— there exists no computable encoding of the try-catch operator in GCCS extended
with the interrupt operator that preserves universal termination.

The last item formalizes an interesting impossibility result about the encodability of
try-catch into the interrupt operator. As far as the inverse encoding is concerned, one
may think to model the interrupt operator in terms of try-catch by using an encoding
like:

[[P4Q]] =
{

try (P |throw) catchQ if Q can execute at least one action
P otherwise

It is easy to see that given a process P including the interrupt operator, the corresponding
encoding reproduces all the computations of P . Thus, we have that if P existentially
terminates, then also its encoding existentially terminates. Nevertheless, the encoding
does not preserve existential termination because the opposite implication does not hold.

On the Expressive Power of Process Interruption and Compensation 31

Consider, for instance, the process:

a.recX.(τ.X) | b.c | (a.b)4c

that does not existentially terminate. According to the approach followed by the previous
encoding, this process is modeled by:

a.recX.(τ.X) | b.c | try (a.b|throw) catch c

which instead existentially terminates in case the throw action is the first one to be
executed. We leave for future work the investigation of a faithful encoding of the interrupt
operator in terms of try-catch.

7. Conclusion and Related Work

We have investigated the impact of the interrupt and the try-catch operators on the
decidability of existential and universal termination in fragments of CCS with either
replication or recursion. Table 1 in the Introduction depicts all the results proved in this
paper and the impact of these results has been discussed in Section 6.

It is worth comparing the results proved in this paper with similar results presented
in (Busi et al. 2003; Busi et al. 2008). In that paper, the interplay between replica-
tion/recursion and restriction is studied: a fragment of CCS with restriction and repli-
cation is proved to be weakly Turing powerful (according to the criteria presented in
the previous section), while the corresponding fragment with recursion is proved to be
Turing complete. The main result proved in (Busi et al. 2003; Busi et al. 2008) is the
decidability of universal termination in CCS with replication instead of recursion. In that
paper, general replication !P is considered instead of the more constrained guarded repli-
cation !a.P considered in this paper. We can generalize the results, proved in this paper
for CCS4! and CCStc

! , considering general replication instead of guarded replication.
The undecidability results trivially hold moving from guarded to general replication. As
far as the decidability results are concerned, we now show how to modify the proof in
Section 5.1 in order to prove decidability of universal termination also in the case of
general replication. As we resort to the theory of well-structured transition systems, we
need to consider a finitely branching transition system. To do so, we do the proof on an
alternative finitely branching transition system obtained considering the following rules
for replication:

P
α−→ P ′

!P α−→ P ′| !P

P
α−→ P ′ P

α−→ P ′′

!P τ−→ P ′| P ′′| !P

which are equivalent, with respect to universal termination (see the proof in (Busi et al.

M. Bravetti and G. Zavattaro 32

2003; Busi et al. 2008)), to the usual semantics:

P |!P α−→ P ′

!P α−→ P ′

As far as the try-catch operator is concerned, the proof in Section 5.1 applies also to
general replication (defined according to the finitely branching rules) substituting !α.P
with !P in the definition of dtc() and Sub(). As far as the interrupt operator is concerned,
we need also to replace all occurrences of tryP catchQ by P4Q.

The interplay between restriction and replication/recursion observed in (Busi et al.
2003; Busi et al. 2008) is similar to what we have proved in this paper about the interplay
between the try-catch operator and replication/recursion. This proves a strong connection
between restriction and try-catch, at least as far as the computational power is concerned.
Intuitively, this follows from the fact that, similarly to restriction, the try-catch operator
defines a new scope for the special throw action which is bound to a specific exception
handler. On the contrary, the interrupt operator does not have the same computational
power. In fact, the calculus with recursion and interrupt is only weakly Turing powerful.
This follows from the fact that this operator does not provide a similar binding mechanism
between the interrupt signals and the interruptible processes.

It is worth comparing our criterion for the evaluation of the expressive power with
the criterion used by Palamidessi in (Palamidessi 2003) to distinguish the expressive
power of the synchronous and the asynchronous π-calculus. Namely, in that paper, it is
proved that there exists no modular embedding of the synchronous into the asynchronous
π-calculus that preserves any reasonable semantics. When we prove that universal ter-
mination (resp. existential termination) is undecidable in one calculus while it is not
in another one, we also prove that there exists no computable encoding (thus also no
modular embedding) of the former calculus into the latter that preserves any semantics
preserving universal termination (resp. existential termination). If we assume that the
termination of one computation is observable (as done for instance in process calculi with
explicit termination (Baeten et al. 2008)), we have that any reasonable semantics (ac-
cording to the notion of reasonable semantics presented in (Palamidessi 2003)) preserves
both universal and existential termination.

We conclude by mentioning the investigation of the expressive power of the disrupt
operator (similar to our interrupt operator) done by Baeten and Bergstra in a technical
report (Baeten and Bergstra 2000). In that paper, a different notion of expressive power
is considered: a calculus is more expressive than another one if it generates a larger set of
transition systems. We consider a stronger notion of expressive power: a calculus is more
expressive than another one if it supports a more faithful modeling of Turing complete
formalisms.

Acknowledgments We thank the anonymous referees and Catuscia Palamidessi (member
of the editorial board who followed the publication of this paper) for helpful suggestions

On the Expressive Power of Process Interruption and Compensation 33

that allowed us to improve the presentation. We also thank one of the reviewers for the
idea behind the encoding of interrupt in terms of try-catch discussed in Section 6.

References

J.C.M. Baeten, T. Basten, and M.A. Reniers. Process algebra (equational theories of communi-

cating processes). Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, 2008.

J.C.M. Baeten and J.A. Bergstra. Mode transfer in process algebra. Report CSR

00-01, Technische Universiteit Eindhoven. This paper is an expanded and re-

vised version of J. Bergstra, A mode transfer operator in process algebra, Report

P8808, Programming Research Group, University of Amsterdam, 2000. Available at

http://alexandria.tue.nl/extra1/wskrap/publichtml/200010731.pdf

L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long running transactions. In

FMOODS’03: Proceedings of the 6th IFIP International Conference on Formal Methods for

Open Object-based Distributed Systems, volume 2884 of LNCS, pages 124–138. Springer, 2003.

M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,

A. Ravara, D. Sangiorgi, V.T. Vasconcelos, and G. Zavattaro. SCC: A Service Centered

Calculus. In WS-FM 2006: Proceedings of the Third International Workshop on Web Services

and Formal Methods, volume 4184 of LNCS, pages 38–57. Springer, 2006.

R. Bruni, H.C. Melgratti, and U. Montanari. Nested Commits for Mobile Calculi: Extending

Join. In TCS 2004: IFIP 18th World Computer Congress, TC1 3rd International Conference

on Theoretical Computer Science, pages 563–576. Kluwer, 2004.

R. Bruni, H.C. Melgratti, and U. Montanari. Theoretical foundations for compensations in flow

composition languages. In POPL 2005: Proceedings of the 32nd Symposium on Principles of

Programming Languages, pages 209–220, ACM Press, 2005.

N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. Recursive Definitions in Channel

Based Calculi. In ICALP’03: Proceedings of 30th International Colloquium on Automata,

Languages and Programming, volume 2719 of LNCS, pages 133–144, Springer, 2003.

N. Busi, M. Gabbrielli, and G. Zavattaro. On the Expressive Power of Recursion, Replication,

and Iteration in Process Calculi. In Mathematical Structure in Computer Science, to appear.

Extended version of (Busi et al. 2003).

M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling long-

running business transactions. In COORDINATION’04: Proceedings of the 6th International

Conference on Coordination Models and Languages, volume 2949 of LNCS, pages 87–104.

Springer, 2004.

M. Butler, C.A.R. Hoare, and C. Ferreira. A trace semantics for long-running transactions.

In Proceedings of 25 Years of Communicating Sequential Processes, volume 3525 of LNCS,

pages133–150. Springer, 2005.

J. Esparza and M. Nielsen. Decidability Issues for Petri Nets-a Survey. Bulletin of the European

Association for TCS, 52:245–262, 1994.

A. Finkel and P. Schnoebelen. Well-Structured Transition Systems Everywhere!. Theoretical

Computer Science, 256:63–92, 2001.

U. Goltz. On Representing CCS Programs by Finite Petri Nets. In MFCS’88: Proceedings

of Mathematical Foundations of Computer Science, volume 324 of LNCS, pages 339–350.

Springer, 1988.

M. Bravetti and G. Zavattaro 34

C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. On the Interplay between Fault Handling

and Request-Response Service Invocations. In ACSD’08: Proceedings of 5th IEEE 8th Inter-

national Conference on Application of Concurrency to System Design, pages 190–199. IEEE

Computer Society press, 2008.

G. Higman. Ordering by divisibility in abstract algebras. In Proc. London Math. Soc., volume

2, pages 236–366, 1952.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

J.B. Kruskal. Well-Quasi-Ordering, The Tree Theorem, and Vazsonyi’s Conjecture. Transactions

of the American Mathematical Society, 95(2): 210–225, 1960.

C. Laneve and G. Zavattaro. Foundations of web transactions. In FOSSACS 2005: Proceedings

of the 8th International Conference on Foundations of Software Science and Computational

Structures, volume 3441 of LNCS, pages 282–298. Springer, 2005.

A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services. In ESOP

2007: Proceedings of 16th European Symposium on Programming, volume 4421 of LNCS, pages

33–47. Springer, 2007.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I + II. Information

and Computation, 100(1):1–77, 1992.

M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs, 1967.

J. Misra and W. R. Cook. Computation Orchestration. Journal of Software and System Mod-

eling, 6(1): 83-110, 2007.

OASIS. WS-BPEL: Web Services Business Process Execution Language Version 2.0. Technical

report, OASIS, 2003.

C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous pi-

calculus. Mathematical Structures in Computer Science, 13(5): 685-719, Cambridge University

Press, 2003. A short version of this paper appeared in POPL’97.

J.C. Shepherdson and J. E. Sturgis. Computability of recursive functions. Journal of the ACM,

10:217–255, 1963.

S.G. Simpson. Nonprovability of certain combinatorial properties of finite trees. In Harvey

Friedman’s Research on the Foundations of Mathematics, pages 87–117. North-Holland, 1985.

H.T. Vieira, L. Caires, and J.C. Seco. The Conversation Calculus: A Model of Service-Oriented

Computation. In ESOP 2008: Proceedings of 17th European Symposium on Programming,

volume 4960 of LNCS, pages 269–283. Springer, 2008.

W3C. WS-CDL: Web Services Choreography Description Language. Technical report, W3C,

2004.

