
Secure shared data-space Coordination

Languages: a Process Algebraic survey ?

Riccardo Focardi

Dipartimento di Informatica, Università Cà Foscari di Venezia
Via Torino 155, I-30172 Mestre (Ve), Italy

e-mail:focardi@dsi.unive.it

Roberto Lucchi Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,
Mura Anteo Zamboni 7, I-40127 Bologna, Italy.

e-mail:{lucchi,zavattar}@cs.unibo.it

Abstract

Shared data-space coordination languages, which provide a means to program inter-
actions between decoupled entities abstracting away from their internal behavior,
represent a powerful framework for programming network applications over the In-
ternet and, in general, in open systems where the entities involved are not known a
priori. In this context, where programs may run in an untrusted environment, new
challenges come into play such as to provide a means to support security. In this
paper we outline the most significant security threats emerging in this context and
we present a survey, in a process algebraic setting, of the most interesting shared
data-space coordination languages.

1 Introduction

New networking technologies are calling for the definition of models and lan-
guages adequate for the design and management of new classes of applications.
Innovations are moving towards two directions. On the one hand, the Internet
is the candidate environment for supporting the so-called wide area applica-
tions. On the other hand, smaller networks of mobile and portable devices,
such as mobile ad-hoc networks or peer-to-peer systems, support applications

? Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

Preprint submitted to Elsevier Preprint 2 May 2006



based on entities or components which interact according to a dynamically
reconfigurable communication structure. In both cases, the challenge is to de-
velop applications without knowing, at design time, the overall structure of the
system as well as the entities that will be involved. Indeed, these systems are
usually open to new entities or components which are unknown beforehand.

Furthermore, our society is becoming more and more dependent on computer
networks: the enormous amount of data that is elaborated, transmitted or
stored needs some form of protection. Hence, in order to guarantee some se-
curity properties, several procedures based on cryptography (see, e.g. [17])
have been proposed in the literature. The goals of these protocols cover a large
area of applications, e.g. privacy and authentication of the messages, personal
identification, digital signatures, electronic money transfer, credit card trans-
actions and many other critical applications. Actually, security protocols and
the applications exploiting them are typically based according to a channel
based topology.

Coordination models and languages, which advocate a distinct separation be-
tween the internal behaviour of the entities and their interaction, represent
a promising approach for the development of applications for this class of
dynamic and open systems. For instance, we assist to a renewed interest in
data-driven coordination infrastructures originated by Linda [8] as exempli-
fied by recent commercial products, such as JavaSpaces [18] and TSpaces [20],
which are two coordination middlewares for distributed Java [11] programming
proposed by Sun Microsystem and IBM, respectively. Both proposals exploit
the so-called generative communication [8]: a sender communicates with one
or more receivers through a shared tuple space (TS for short), where emitted
tuples are collected; a receiver can read or consume the tuples from the TS; a
tuple generated by an agent has an independent existence in the tuple space
until it is explicitly withdrawn by a receiver; in fact, after its insertion in TS,
a tuple becomes equally accessible to all entities, but it is bound to none. This
form of communication is referred to as generative communication because
when a datum is produced, it has an existence which is independent of its
producer, and it is equally accessible to all entities.

In this paper we outline the main security threats which occur when the
Linda coordination model is used in untrusted environments. Then we clas-
sify the most interesting solutions available in the literature in two classes by
proposing two abstract calculi which implement access control mechanisms
in two different manners: entity-driven approach and knowledge-driven ap-
proach. Essentially, the former one exploits the notion of entity to express
access permissions and to govern the accesses to the resources according with
system capabilities, while the latter one uses some reserved information that
are required when accessing the resources.

2



It is interesting to notice that the classification that we propose for secure
extensions of Linda is reminiscent of a recent taxonomy of probabilistic ex-
tensions of Linda [4] that considers two main approaches: the schedule-driven
approach initiated in [6] and the data-driven approach of [3]. In the former,
probability distributions are used to specify the expected schedule of the pro-
cesses accessing the tuple space. In the latter, weights are associated to tuples
in order to quantify their relevance: as greater is the weight of a tuple, as
higher is the probabibility for that tuple to be retrieved. Schedule-driven is
similar to entity-driven because it focuses on processes, while data-driven is
similar to knowledge-driven because it assumes that the relevant information,
i.e. the weights or the capabilities (or the like), are stored within tuples.

The paper in organized as follows. Section 2 presents the Linda calculus, Sec-
tion 3 an overview of the security threats emerging when the Linda coordina-
tion model is exploited in open environments, Section 4 describes two possible
approaches for dealing with security issues and Section 5 reports the most in-
teresting actual proposals already available in the literature. Finally Section 6
concludes the paper with some final comments and by reporting related work.

2 The Linda coordination model

The coordination primitives that we have in Linda are: out(e), in(t) and rd(t).
The output operation out(e) inserts a tuple e in the tuple space (TS for short).
Primitive in(t) is the blocking input operation: when an occurrence of a tuple
e matching with t (denoting a template) is found in the TS, it is removed
from the TS and the primitive returns the tuple. The read primitive rd(t) is
the blocking read operation that, differently from in(t), returns the matching
tuple e without removing it from the TS. In literature a number of Linda-
based languages [14,15,18] support multiple spaces, thus in the model we are
going to describe, named LinCa, we enrich the syntax of the primitives with
an additional paramater indicating the space where the operation is to be
performed.

Our modeling of the Linda coordination primitives does not consider the
eval(e) operator usually supported by most of the Linda implementations
(see for instance [7]). This primitive is used to emit an active tuple; an active
tuple is a tuple in which some of the fields must be computed by processes
that are spawn in parallel, and only at the end of the computation of all of
these processes the new tuple is actually inserted in the TS. In our model,
new parallel processes can be emitted simply using the parallel composition
as detailed in the following.

More precisely, Linda tuples are ordered and finite sequences of typed fields,

3



while template are ordered and finite sequences of fields that can be either
actual or formal (see [7]): a field is actual if it specifies a type and a value,
whilst it is formal if the type only is given. For the sake of simplicity, in the
formalization we are going to present fields are not typed.

Formally, let Mess, ranged over by m, m′, . . ., be a denumerable set of mes-
sages and V ar, ranged over by x, y, . . ., be the set of data variables. In the
following, we use ~x, ~y, . . ., to denote finite sequences x1; x2; . . . ; xn of pairwise
distinct variables.

Tuples, denoted by e, e′, . . ., are finite and ordered sequences of data fields,
whilst templates, denoted by t, t′, . . ., are finite and ordered sequences of fields
that can be either data or wildcards (used to match with any message).

Formally, tuples are defined as follows:

e = 〈~d〉

where ~d is a term of the following grammar:

~d ::= d | d; ~d
d ::= m | x.

The definition of template follows:

t = 〈~dt〉

where ~dt is a term of the following grammar:

~dt ::= dt | dt; ~dt
dt ::= d | null.

A data field d can be a message or a variable. The additional value null denotes
the wildcard, whose meaning is the same of formal fields of Linda, i.e. it
matches with any field value. In the following, the set Tuple (resp. Template)
denotes the set of tuples (resp. templates) containing no variable.

The matching rule between tuples and templates we consider is the classical
one of Linda, whose definition is as follows.

Definition 2.1 Matching rule - Let e = 〈d1; d2; . . . ; dn〉 ∈ Tuple be a
tuple, t = 〈dt1; dt2; . . . ; dtm〉 ∈ Template be a template; we say that e matches
t (denoted by e . t) if the following conditions hold:

(1) m = n.
(2) dti = di or dti = null, 1 ≤ i ≤ n.

Condition 1. checks if e and t have the same arity, whilst 2. tests if each
non-wildcard field of t is equal to the corresponding field of e.

4



Let Sp, ranged over by s, s′, . . ., be the set of tuple space names. In the
following, we denote with TSs the tuple space whose name is s. Processes,
denoted by P , Q, . . ., are defined as follows:

P , Q, . . . ::= processes
0 null process

| out e@s.P output
| rd t(~x)@s.P read
| in t(~x)@s.P input
| P ‖ P parallel composition
| !P replication

A process can be a terminated program 0, a prefix form µ.P , the parallel
composition of two programs, or the replication of a program. The prefix µ
can be one of the following coordination primitives: i) out e@s, that writes the
tuple e in the TSs; ii) rd t(~x)@s, that given a template t reads a matching
tuple e in the TSs and stores the return value in ~x; iii) in t(~x)@s, that given
a template t consumes a matching tuple e in the TSs and stores the return
value in ~x. In both the rd t(~x)@s and in t(~x)@s operations (~x) is a binder for
the variables in ~x. The parallel composition P ‖ Q of two processes P and Q
behaves as two processes running in parallel, whilst the replication operator
!P denotes the parallel composition of an unbounded number of copies of P .

We use P [d/x] to denote the process that behaves as P in which all occurrences

of x are replaced with d. We also use P [~d/~x] to denote the process obtained by
replacing in P all occurrences of variables in ~x with the corresponding value
in ~d, i.e. P [d1; d2; . . . ; dn/x1; x2; . . . ; xn] = P [d1/x1][d2/x2] . . . [dn/xn]. We also
say that a process is closed if it has no free variable. In the following, we
consider only processes that are closed and well formed; Process denotes the
set of such processes.

Let DSpace, ranged over by DS, DS ′, . . ., be the set of possible configurations
of the TSs, that is DSpace = {TSs | s ∈ Sp, TSs ∈ Mfin(Tuple)}, where
Mfin(S) denotes the set of all the possible finite multisets on S. The set
System = {[P, DS] | P ∈ Process, DS ∈ DSpace}, ranged over by sys, sys′,
. . ., denotes the possible configurations of systems. Given sys = [P, DS] we
assume that the indexes of the data-spaces in DS are all pairwise distinct.

The semantics we use to describe processes interacting via LinCa primitives is
defined in terms of a transition system (System,−→), where →⊆ System ×
System. More precisely, −→ is the minimal relation satisfying the axioms
and rules of Table 1 (symmetric rule of (4) is omitted). (sys, sys′) ∈−→ (also
denoted by sys −→ sys′) means that a system sys can evolve (performing a
single action) in the system sys′.

5



(1) [out e@s.P, DS ∪ {TSs}] −→ [P,DS ∪ {TSs ⊕ e}]

(2)
∃e ∈ TSs : e . t

[in t(~x)@s.P, DS ∪ {TSs}] −→ [P [Rv(e)/~x], DS ∪ {TSs − e}]

(3)
∃e ∈ TSs : e . t

[rd t(~x)@s.P, DS ∪ {TSs}] −→ [P [Rv(e)/~x], DS ∪ {TSs}]

(4)
[P,DS] −→ [P ′, DS′]

[P ‖ Q,DS] −→ [P ′ ‖ Q,DS′]

(5)
[P,DS] −→ [P ′, DS′]

[!P,DS] −→ [P ′ ‖!P,DS′]

Table 1
Semantics of LinCa

Axiom (1) describes the output operation that produces a new occurrence of
the tuple e in the space TSs (TSs ⊕ e denotes the multiset obtained by TSs

increasing by 1 the number of occurrences of e). Rules (2) and (3) describe
the in and the rd operations, respectively: if a matching e tuple is currently
available in the space TSs, it is returned at the process invoking the operation
and, in the case of in, it is also removed from the space (TSs − e denotes
the removal of an occurrence of e from the multiset TSs). More precisely,
the return value is indicated with Rv(e) which represents, in this case, the
entire sequence of data fields in e. Rule (4) represents a local computation of
processes, whilst (5) the replication operator that produces a new instance of
the process and copies itself.

3 Security threats

Recent distributed applications such as Web services, applications for Mobile
Ad Hoc Networks (MANETs), Peer to Peer Applications (P2P) are inherently
open to processes, entities, components that are not known at design time.
When the Linda coordination model is exploited to program the coordination
inside this class of applications (see e.g. [13] for Web services, Lime [14] in

6



the context of MANETs and PeerSpaces [5] for P2P applications) new critical
aspects come into play such as the need to deal with a hostile environment
which may comprise also untrusted components. In this case an entity may
enter the system and, according to the data-driven approach, can access the
repository in order to read/remove data, as well as maliciously produce new
data. More precisely, each entity, provided it can access the TS, can perform
any primitive on the space. In particular, the main problem is that any agent
can read/remove any tuple stored into the TS simply by exploiting formal
fields, that acts as wildcards. For instance, any process is allowed to per-
form in 〈null〉(~x)@s thus removing any tuple (which is nondeterministically
selected) with one data field which is available in TSs. The threat in this case
is that a malicious process can interfere with the entities which collaborate by
using the space TS. As far as the output operation is concerned, it can be the
cause of denial of service attacks in which a process maliciously overwhelms
the tuple space with an enormous number of new tuples to be stored.

Example 3.1 Group communication - As an example of security threat,
we consider the case of group communication realized through a shared data-
space. A group G has an associated set of producers and a set of consumers.
The producers can execute the operation sendToGroup(G, d) to produce a da-
tum d ∈ Data which becomes available to the consumers that can consume it by
executing the operation consumeFromGroup(G, x). A trivial implementation
of these two group communication primitives is based on the shared data-space
TSsG

used as a repository for the exchanged messages:

sendToGroup(G, d) := out 〈d〉@sG

consumeFromGroup(G, x) := in 〈null〉(x)@sG.

Since all processes can access the tuple space, also a malicious process could
perform the same operations by: i) inserting new tuples which are not produced
by producers in G, and ii) reading/consuming tuples which were intended for
consumers in G. It is rather easy to see that there is no way to avoid such
kind of attacks. In the following sections we propose, for each language sup-
porting security features that we describe, a solution guaranteeing a secure
group communication.

4 Linda with labels

The extension of Linda with labels we present is devoted to describe uniformly
the several proposals for supporting some form of security in Linda-based lan-
guages which allow us to prevent the threat explained in the previous section.
This uniform presentation represents also the first attempt, to the best of our

7



knowledge, to provide a taxonomy of the solutions adopted in the literature in
order to add security to shared data-space coordination languages. In partic-
ular, such proposals follow two different approaches: i) the knowledge driven,
and ii) the entity driven approaches.

The idea behind the knowledge driven approach is that resources (i.e. tuple
spaces, tuples and single data fields) are decorated with additional reserved
data information and the processes can access the resources only in the case
they prove to keep the knowledge of such a reserved information. In the case
of the entity driven approach, instead, additional information associated to
resources list the entities which are allowed to access the resources.

By comparing the two approaches we see that the knowledge driven one ab-
stracts away from the entities involved in the system. Consequently, the entity
driven approach is better suited when it is possible to know the whole set of
entities involved in the system (e.g., within network where the access is limited
to registered users) while in the opposite case, that is open environments, the
knowledge driven approach is preferable.

Let Lab, ranged over by l, l′, . . ., be the set of labels we use to describe access
permissions and Operation = {out, rd, in}, ranged over by op, be the set of
possible operations. Now we are interested in describing the idea at the basis
of the mechanisms for managing system capabilities. In the following we will
define the implementation of such labels used by the most interesting proposals
available in the literature.

Labels are used to describe access permissions at the level of entire tuple
space, tuple and data field. Formally, tuple spaces are associated with labels
describing the permission which rule the access to the space; we denote with
TSs[l] the space, identified by s, whose label is l. Tuples are now decorated
with a label denoting the permissions which rule the access to the entire tuple
and are syntactically expressed with e[l]. Finally, labels are associated also at
the level of single data fields, the sequence of fields in a tuple is now defined
as

~d ::= l : d | l : d; ~d

where l : d expresses that l rules the access to d.

The following subsections are devoted to formalize the Linda extensions sup-
porting knowledge-driven and entity-driven access control mechanisms named
KdLinCa and EdLinCa, respectively.

8



4.1 Knowledge-driven mechanisms

The knowledge driven approach is based on the idea that the process which is
willing to perform an operation on a certain space must provide the necessary
knowledge for accessing the space, the tuple and the single data field. To
this end, we extend the primitives by adding a label which represents the
knowledge allowing to access the space as follows: rd t(~x)@s[l], out e@s[l] and
in t(~x)@s[l] where l represents such a knowledge. In the same way, we extend
the structure of templates in order to describe the knowledge to access a
certain tuple and the single data fields. In this case, templates are extended
as the labelled tuples defined above. Let op ∈ Operation be an operation; in
the following, abstracting away from the manner it is implemented, we use
l .op l′ as the relation espressing that the label l allows to access, by means
of operation op, a resource labelled with l′. In the following we describe how
such a relation is defined in existing proposals.

(1K)
l .out l′

[out e@s[l].P,DS ∪ {TSs[l′]}] −→ [P,DS ∪ {TSs[l′]⊕ e}]

(2K)
l .in l′ ∃e ∈ TSs[l′] : e .K

in t

[in t(~x)@s[l].P,DS ∪ {TSs[l′]}] −→ [P [Rv(e)/~x], DS ∪ {TSs[l′]− e}]

(3K)
l .rd l′ ∃e ∈ TSs[l′] : e .K

rd t

[rd t(~x)@s[l].P,DS ∪ {TSs[l′]}] −→ [P [Rv(e)/~x], DS ∪ {TSs[l′]}]

Table 2
Semantics of knowledge-driven mechanisms

The matching rule of labelled tuples and templates, whose definition follows,
is a conservative extension of the standard one.

Definition 4.1 Knowledge-driven matching rule - Let e = 〈l1 : d1; l2 :
d2; . . . ; ln : dn〉[l] be a tuple, t = 〈lt1 : dt1; lt2 : dt2; . . . ; ltm : dtm〉[lt] be a
template and op ∈ {rd, in} be an operation; we say that e matches t when the
operation op is performed (denoted by e .K

op t) if the conditions in Definition
2.1 and the following hold:

(1) lt .op l.
(2) lti .op li, 1 ≤ i ≤ n.

9



The first condition verifies that the template has provided the right knowledge
to access the tuple and the second one that the same holds for each labelled
data fields.

The semantics of KdLinCa is defined as in Table 1 where the rules (1), (2)
and (3) are replaced by the corresponding ones in Table 2. Informally, the
operations can be performed only if they provide the right knowledge to access
the tuple space and, in the case of data-retrieval, the specific matching tuple.
More precisely, out e@s[l] is performed provided that the label l satisfies the
policy on output of l′ which is the space where it intends to insert the tuple.
Besides testing the access permissions at the level of tuple space, the data-
retrieval operations rd and in verify access permissions at the level of tuples
and single fields according with the definition of .K

op.

Finally, a remark about the return value Rv(e) of a data-retrieval operation
accessing the entry e. In this case Rv(e) could contain not only data fields but
also some labels available in e, thus obtaining dynamic privileges acquisition.
In the following we will see how this is actually permitted in the languages
based on knowledge-driven mechanisms.

4.2 Entity-driven mechanisms

The entity-driven mechanism is based on the idea that the access permissions
(in this case by means of labels) somehow list the entities which are allowed
to perform specific operations or to access certain tuples. To this end, the
process description is enriched with an information indicating the identity of
the entity executing the process. Formally let Id, ranged over by id, id′, . . .,
be the set of entity identifiers, the processes we consider are defined now by
PE, QE, . . . ::= id : P | PE ‖ PE where P is a standard process as defined in
Section 2. id : P means that the entity identified by id is willing to execute P
and PE ‖ QE is used to express that different entities can execute processes.
In a term PE we assume that the identities are pairwise distinct.

Let op ∈ Operation be an operation, in the following we use the relation
id.op l to denote whether the entity identifier id is allowed to access, during the
operation op, the resource labelled with l (obviously op = out has a meaning
only in the case l is associated with a tuple space).

In the case of the entity-driven mechanism the matching rule, whose defini-
tion follows, takes into account the identity of the entity in order to verify it
possesses the right permissions.

Definition 4.2 Entity-driven matching rule - Let e = 〈l1 : d1; l2 :
d2; . . . ; ln : dn〉[l] be a tuple, t = 〈dt1; dt2; . . . ; dtm〉 be a template, op ∈ {rd, in}

10



be an operation and id ∈ Id be an entity identifier; we say that e matches t
when op is performed by id (denoted by e.E

op,id t) if the conditions in Definition
2.1 and the following hold:

(1) id .op l.
(2) id .op li, 1 ≤ i ≤ n.

The first condition verifies that the entity identified by id has the right per-
mission to access the tuple and the second one that the same holds for all data
fields.

In order to support dynamic privileges acquisition we assume that privileges,
as in the knowledge driven approach, are contained in the tuple space thus
an entity can update its access permission by performing data-retrieval opera-
tions. We use the function upd(id, e, DS) to represent the new state of the data
spaces after the access permission update for entity id when it reads/consumes
the tuple e.

The semantics of the calculus based on an entity-driven mechanism is reported
in Table 3. The five rules are simple adaptations of the corresponding rules in
Table 1.

5 Linda-like languages for untrusted environments

The most interesting proposals of coordination languages supporting security
in untrusted environments will be listed and described in this section as in-
stantiations of KdLinCa and EdLinCa. More precisely, we will describe the
labels content and their granularity and, when necessary, the return value of
data-retrieval operations.

5.1 KLAIM

KLAIM [15] (Kernel Language for Agent Interaction and Mobility) is designed
to program distributed applications that can interact using multiple tuple
spaces and mobile code. The KLAIM operations basically are the same of
Linda where in addition they allow the reference to a specific tuple space.

The basic element of the system is the location that is composed by a tuple
space and a process. Locations are described by a term l : [P, TS] where l is
a location while P and TS are, respectively, the process running at and the
space contained in l. Systems consist of the parallel composition of locations.

11



(1E)
id .out l

[id : out e@s.P, DS ∪ {TSs[l]}] −→ [id : P,DS ∪ {TSs[l]⊕ e}]

(2E)

id .in l ∃e ∈ TSs[l] : e .E
in,id t

[id : in t(~x)@s.P, DS ∪ {TSs[l]}] −→

[id : P [Rv(e)/~x], upd(id, e,DS ∪ {TSs[l]− e})]

(3E)

id .rd l ∃e ∈ TSs[l] : e .E
rd,id t

[id : rd t(~x)@s.P, DS ∪ {TSs[l]}] −→

[id : P [Rv(e)/~x], upd(id, e,DS ∪ {TSs[l]})]

(4E)
[PE

1 , DS] −→ [PE
2 , DS′]

[PE
1 ‖ PE , DS] −→ [PE

2 ‖ PE , DS′]

(5E)
[id : P,DS] −→ [id : P ′, DS′]

[id : !P,DS] −→ [id : P ′ ‖!P,DS′]

Table 3
Semantics of entity-driven mechanisms

The entity driven approach is used to control the accesses: locations in this
case correspond to entity identifiers of EdLinCa thus tuple spaces as well as
entities are identified by locations.

The access permissions KLAIM supports have a granularity at the level of
tuple spaces. Moreover it does not allow dynamic privileges acquisition: capa-
bilities are completely defined at design time. Access permissions, expressed
in the EdLinCa abstract model by means of labels, are in this case sets asso-
ciated to tuple spaces and describe, for each location, the allowed operations.
Moreover, if a process is allowed to perform in operations it inherits also the
permission to access the space with rd ones.

Formally let Loc, ranged over by loc, be the set of locations. The set of
entity identifiers and tuple space names are respectively defined as Id :=
Loc and Sp := Loc, while the set of labels is defined as the set Lab :=
Fp(Loc,P(Operations)) of the partial functions from locations to sets of op-
erations. Given a label l that maps the location loc to the set of operations

12



ao, denote with (loc 7→ ao) ∈ l, this means that the processes running on
the location l are allowed to perform on the space with location loc only the
operations in ao. For instance, TSloc1 [{(loc2 7→ {rd, out}), (loc3 7→ {in, out})}]
means that processes running at location loc2 can access TSloc1 only by using
rd and out operations, while processes running at loc3 only by using in and out
ones. We assume that there exists a special label in Lab, denoted by ⊥, that
does not filter accesses to resources. Since KLAIM does not support labels at
the level of single tuple and data field, we assume that tuples and data fields
are associated to ⊥.

Now we are ready to define the relation .op, which verifies access control
capabilities, and the function upd used to update access permissions.

Definition 5.1 (.op, upd) - Let loc ∈ Id, op ∈ Operation and l ∈ Lab be,
respectively, an entity identifier, an operation and a label, loc .op l holds if one
of the following conditions hold:

• l = ⊥.
• ∃(loc′ 7→ ao) ∈ l s.t. loc = loc′ and (op ∈ ao or (op = rd and in ∈ ao))

As there is no privileges acquisition, the funtion upd does not modify the data-
space, that is:
upd(id, e, DS) = DS for all id ∈ Id, e ∈ Tuple and DS ∈ DSpace.

The semantics of KLAIM is defined by the semantics of EdLinCa in Table 3
where Id, Lab, upd and .op are the ones defined in the current section. The
KLAIM model is also equipped with a type system which permits to verify
whether a system behaves according with the capabilities. Types are used to
express location capabilities, that is the capabilities associated to the processes
running in that location. By exploiting these types, a static type-checking has
been introduced for verifying whether the access permissions associated to
the location where the processes run allow for the execution of the primitives
declared by the processes.

Example 5.2 Secure group communication - We propose a secure so-
lution to the problem of group communication described in Example 3.1.

The idea is that we use a certain location which contains the tuple space used
to exchange data whose label allows: i) out operations for producers, and ii)
in operations for consumers.

Let G be the name of the group, sG be the location which identifies the tuple
space used by group G, P and C be the sets of locations (entity identifiers)
of producers and consumers, respectively, and l := {(lp 7→ {out}) | lp ∈
P} ∪ {(lc 7→ {in}) | lc ∈ C} be the label associated to TSsG

.

13



Let d ∈ Data be a datum, a producer can insert the datum d by using the
function sendToGroup(G, d) defined as follows (we omit to denote the ⊥ labels
on tuples and data fields):

sendToGroup(G, d) := out 〈d〉@sG

while a consumer can acquire and store data in x by using the function
consumeFromGroup(G, x) defined as follows:

consumeFromGroup(G, x) := in 〈null〉(x)@sG.

In this case the label associated to TSsG
, l, guarantees that only producers can

insert new tuples into the space and only consumers can consume that tuples.
Indeed, a malicious process whose location (i.e. an entity) l 6∈ P ∪ C cannot
access the space.

5.2 Secure Lime

This proposal [12] introduces security mechanisms in Lime [14] (Linda in a
Mobile Environment) at the implementation level. It is a secure implementa-
tion of Lime that provides a password-based access control mechanism at the
level of tuples and tuple spaces. More precisely, the password-based system
on tuple space and tuples permits the access only to the authorized processes,
that is those that know the password. In particular, password-based access
permissions on tuples can be associated to the rd and to the in operations
while, at the level of tuple space, a single password can be used to limit the
access to the space. In the case a process is allowed to remove a certain tuple
(i.e. it knows the password associated to the removal operations), it has also
the permission of reading that tuple.

We model such a solution by means of KdLinCa. Indeed, passwords are not as-
sociated to entities thus any entity which keeps a password, say pw, can access
resources protected with pw. Let Passwd, ranged over by pw, be the set of
passwords. The set of labels is, in this case, composed of two sets: one for la-
beling tuples (with rd and in modalities) and the second one for labeling tuple
spaces. Formally, Lab := LabTuple ∪ LabTS where LabTuple := {(pw, pw′) |
pw, pw′ ∈ Passwd} and LabTS := Passwd. (pw, pw′) ∈ LabTuple means
that the tuple is protected with pw and pw′ for rd and in accesses, respec-
tively. pw ∈ LabTS means that the tuple space is protected with password pw.
Obviously processes when performing an operation will use a single password
which, in the case of data-retrieval, will be associated to the operation it is
executing. We assume that there exists a special label, denoted by ⊥, whose
meaning is that the resource is not protected; since the language does not

14



support labels at the level of data fields, ⊥ will be associated to data fields.
The definition of the .op operator and of the return value follows.

Definition 5.3 (.op, Rv) - Let pw, l ∈ Lab be two labels, op ∈ Op be an
operation, we say that pw .op l if one of the following conditions holds:

• l = (pw1, pw2) ∈ LabTuple and (op = rd) and ((pw = pw1)or(pw = pw2)).
• l = (pw1, pw2) ∈ LabTuple and (op = in) and (pw = pw2).
• l = pw′ ∈ LabTS and pw = pw′.
• l = ⊥.

Observe that, as in KLAIM, the first item ensures that the in capability im-
plies also the rd capability. Let e[l] ∈ Tuple, the return value is defined as
Rv(e[l]) := e (i.e it does not return labels used to control the accesses).

The semantics of the secure version of Lime is defined by the semantics of
KdLinCa in Table 2 where Lab, .op and Rv are the ones defined in the current
section.

Example 5.4 Secure group communication - A solution to the problem
of secure group communication described in Example 3.1 is presented.

The idea is that we use a certain tuple space to exchange data whose access
is protected by a password which is known only to the entities involved in the
group.

Let G be the name of the group, TSsG
be the tuple space used by group

G and pwG be the password used to protect the access to TSsG
. Let d ∈

Data be a datum, a producer can insert the datum d by using the function
sendToGroup(G, d) defined as follows (we omit ⊥ labels on tuples and data
fields):

sendToGroup(G, d) := out 〈d〉@sG[pwG]

while a consumer can acquire and store data in x by using the function
consumeFromGroup(G, x) defined as follows:

consumeFromGroup(G, x) := in 〈null〉(x)@sG[pwG].

In this case, since only the entities in G hold pwG, only those ones can access
the space TSsG

[pwG] and no malicious entities can access the space. We would
like to point out that, differently from Example 5.2, in this language consumers
can also insert new tuples as well as producers can also consume tuples. This
directly follows by the fact that the password mechanism is symmetric: for
instance when a producer protects a tuple it defines the password thus it can
also consume that tuple.

15



5.3 SecOS

SecOS [19] follows the knowledge-driven approach thus we exploit KdLinCa

to describe the language and its semantics. Labels, in this case named keys,
are available in two kinds: i) symmetric, and ii) asymmetric keys. The former
one essentially defines the match between keys as the result of the comparison
while in the latter case the idea that there exists a relation which permits to
verify whether a certain key is the co-key of another one. Such an approach
is the well known one used in the field of cryprography where the public-key
mechanism guarantees that given a key it is not possible to guess its co-key.

The access keys can be associated to either the tuples (object locks) or single
fields contained in tuples (field locks) since the model works on a single tuple
space whose access is not restricted to anyone (consequently output opera-
tions are not controlled by means of labels). Data in the tuples can contain
access key values, thus the shared space can be used to perform the distri-
bution of access permissions. The mechanism used to control the accesses is
the knowledge-driven one: keys are used to express access permissions and, in
the case of symmetric keys, the same key is used to protect and access the
information, while in the case of asymmetric keys it uses a pair of keys, one
to protect and another one to access.

Let Key, ranged over by k, be the set of symmetric keys, and AKey, ranged
over by ka, be the set of asymmetric keys. We define · : AKey → AKey as
the function that, given an asymmetric key, returns the corresponding co-key

and such that k = k. For the sake of simplicity, we extend such a definition
also for symmetric keys where the function · is the identity one. Since SecOS
uses only one unprotected tuple space, we assume that there exists a special
value, denoted with ⊥, which we use to label the tuple spaces as well as that
all operations use ⊥ as label for accessing the space.

In the case of SecOS the set of labels of KdLinCa is defined as Lab := Key ∪
AKey. The definition of the relation .op between labels and of the return value
follows.

Definition 5.5 (.op, Rv) - Let k, k′ ∈ Lab be two access keys, op ∈ Op be
an operation, we say that k .op k′ if k′ = k (for the sake of simplicity we are
assuming that ⊥ = ⊥).

The return value of data-retrieval operations is defined as follows: Rv(e) := e
for all tuples e ∈ Tuple.

It is worth noting that op does not affect the definition of .op. Indeed, the
same access policy is associated to rd and in operations.

16



The semantics of SecOS is defined by the semantics of KdLinCa in Table 2
where Lab, .op and Rv are the ones defined in the current section. It is worth
noting that, since the return value contains both labels and data fields, SecOS
allows for dynamic privileges acquisition and that, since the space is not pro-
tected by labels, output operations cannot be controlled thus losing the pos-
sibility to avoid denial of service attacks.

Example 5.6 Secure group communication - Here we use SecOS to
present a solution to the problem of secure group communication described in
Example 3.1.

The idea is to exploit an asymmetric key, that we use to protect tuples, which
is known only to the producers while the consumers are the only ones which
hold the corresponding co-key. In this way such tuples can be inserted and
consumed only by producers and consumers, respectively.

Let G be the name of the group, kpG ∈ AKey be the asymmetric key used to
protect the access to TSsG

which is known only to the producers in G while its
co-key, kpG = kcG, is known only to the consumers.

Let d ∈ Data be a datum, a producer can insert the datum d by using the
function sendToGroup(G, d) defined as follows (we omit ⊥ labels on tuple
spaces and data fields and the reference to the single space available):

sendToGroup(G, d) := out 〈d〉[kpG]

while a consumer can acquire and store data in x by using the function
consumeFromGroup(G, x) defined as follows:

consumeFromGroup(G, x) := in 〈null〉 (x)[kcG].

Besides guaranteeing that no malicious processes can insert or consume tuples
used by the group, it is also guaranteed that receivers cannot insert new tuples
as well as producers cannot consume available tuples.

5.4 SecSpaces

SecSpaces [10] follows the same idea introduced by SecOS. On one hand it
refines the access permissions of SecOS by allowing to express different labels
for rd and in operations (i.e. different access policies), on the other hand labels
can be associated only at the level of tuple and not single data fields. Finally,
the return value of a matching tuple does not contain labels, thus the only
way to perform dynamic privileges acquisition is to insert labels within a data
field.

17



Labels in SecSpaces are defined as Lab := LabTuple ∪ LabOp where
LabTuple := {((k, ak)rd, (k

′, ak′)in) | k, k′ ∈ Key, ak, ak′ ∈ AKey} and
LabOp := {(k, ak) | k ∈ Key, ak ∈ AKey} (Key and AKey are the ones
used to formalize SecOS which are defined in the previous section). Labels in
LabTuple are used to protect tuples: ((k, ak)rd, (k

′, ak′)in) ∈ LabTuple means
that access permissions for rd and in are expressed by means of the pair (k, ak)
and (k′, ak′), respectively. Labels in LabOp are used when performing an oper-
ation, they are not associated to a specific operation because it is dynamically
determined during the execution. Since also SecSpaces models a single un-
protected space and does not support data field labels, we assume that there
exists a special value, denoted by ⊥, which is associated to the space and to
the data fields of tuples and templates.

Definition 5.7 (.op, Rv) - Let (k, ak) ∈ LabOp, ((k1, ak1)rd, (k2, ak2)in) ∈
LabTuple be two labels, op ∈ Op be an operation, we say that (k, ak) .op

((k1, ak1)rd, (k2, ak2)in) if one of the following conditions holds:

• (op = rd) and (k = k1) and (ak = ak1).
• (op = in) and (k = k2) and (ak = ak2).

In the special case the label used to protect is ⊥ we have that l .op ⊥ for all
l ∈ Lab used to access. In the remaining cases the relation does not hold.

Let e[l] ∈ Tuple, the return value is defined as Rv(e[l]) := e (i.e it does not
return labels used to control the accesses).

The semantics of SecSpaces is defined by the one of KdLinCa in Table 2 where
Lab, .op and Rv are the ones defined in the current section. It is worth noting
that SecSpaces refines the access control policies of SecOS from the point of
view of data-retrieval operations while the space is still not protected by labels,
thus output operations cannot be controlled. The model is also equipped with
a testing equivalence [2] which permits to formalize, and verify, some of the
main security properties (e.g., secrecy, authentication).

Example 5.8 Secure group communication - A solution based on Sec-
Spaces supporting the secure group communication described in Example 3.1
is here presented.

The idea to solve the problem is, in this case, similar to the one proposed
by using SecOS in Example 5.6. An asymmetric key, which is known only to
the producers, is used to protect tuples while the consumers are the only ones
which hold the corresponding co-key.

Let kpG, kcG ∈ AKey and G defined as in Example 5.6, d ∈ Data be a datum,
k ∈ Key ba a symmetric key, a producer can insert the datum d by using
the function sendToGroup(G, d) defined as follows (we omit ⊥ labels on tuple

18



spaces and data fields and the reference to the single space available):

sendToGroup(G, d) := out 〈d〉[(k, kpG)rd, (k, kpG)in]

while a consumer can acquire and store data in x by using the function
consumeFromGroup(G, x) defined as follows:

consumeFromGroup(G, x) := in 〈null〉 (x)[(k, kcG)].

Besides guaranteeing the same properties of the solution based on SecOS, it is
worth noting that here it is also possible to refine access permissions on data-
retrieval by distinguishing between the processes allowed to consume and read
the tuples. Such an extension can be obtained by using different asymmetric
keys for rd and in modalities.

6 Conclusion and related work

In this paper we have outlined the main security threats occurring when the
data-space coordination model is used in untrusted environments and pre-
sented a survey of the most interesting Linda-like languages supporting some
form of security policies. To this end we have exploited two meta-models,
KdLinCa and EdLinCa, that describe the idea and the semantics of the ac-
cess control mechanisms based on the knowledge-driven and the entity-driven
approaches, respectively.

We have also proposed a secure solution to the problem of secure group com-
munication in all languages we have discussed. Obviously, as emerge by their
semantics and in some cases by the discussed example, there exist significant
differences among such languages. For instance, by considering the proposals
based on the knowledge-driven approach, the secure version of Lime is the only
one which permits to control output operations, and SecSpaces is the only one
which permits to distinguish between the processes that can consume and the
processes that can read a certain tuple.

Finally, we list some related works which follow different approaches w.r.t.
the ones used by EdLinCa and KdLinCa. Two other proposals, muKLAIM and
Klava, are extensions of the KLAIM model. Differently from KLAIM, muK-
LAIM [9] allows dynamic privileges acquisition. In particular, this can be done
by performing in/rd operations with special template fields. While in KLAIM
security policies do not change dynamically and then static type checking
allows to test if running processes have the necessary access permissions to
perform their operations, muKLAIM proposes a type system that evolves ac-
cording to dynamic variations of security policies. The approach exploits a

19



combination of static and dynamic type checking. In order to improve the
system performance, the type inference rules perform a static type checking
to those operations for which it is possible to statically test the presence of
the necessary access permission.

Klava [1] is an extension of Klaim which exploits cryptography to allow only
to authorized users access to the specific information stored inside the tuples,
but nothing is done to restrict the access to the tuples stored in the TS. In
particular it introduces encrypted messages into the fields of the tuples and
the matching rule allows the evaluation of messages encrypted into fields; the
encryption of messages ensures that they can be read only by the allowed
clients.

Finally, a different approach is proposed in [16], where a general model for co-
ordination middleware that exploits process handlers to control the behaviour
of processes has been presented. More precisely, a context is associated to each
process and it defines which operations are allowed to the process. In order
to express allowed actions, a language derived from CCS is used to describe
which operations the processes can perform.

References

[1] L. Bettini and R. De Nicola. A Java Middleware for Guaranteeing Privacy of
Distributed Tuple Spaces. In E. Astesiano N. Guelfi and G. Reggio, editors,
Proc. of FIDJI’02, Int. Workshop on scientific engineering of distributed Java
applications, volume 2604 of LNCS, pages 175–184. Springer-Verlag, 2003.

[2] M. Bravetti, R. Gorrieri, and R. Lucchi. A formal approach for checking security
properties in SecSpaces. In 1st International Workshop on on Security Issues
in Coordination Models, Languages and Systems, volume 85.3 of ENTCS, 2003.

[3] M. Bravetti, R. Gorrieri, R. Lucchi, G. Zavattaro. Probabilistic and Prioritized
Data Retrieval in the Linda Coordination Model. In Proc. of 7th International
Conference on Coordination Models and Languages (Coordination 04), volume
2949 of LNCS, pages 55–70. Springer Verlag, 2004.

[4] M. Bravetti, R. Gorrieri, R. Lucchi, G. Zavattaro. “Quantitative Information
in the Tuple Space Coordination Model”, Theoretical Computer Science, 346:1,
pages 28-57, Elsevier, 2005.

[5] N. Busi, C. Manfredini, A. Montresor, and G. Zavattaro. PeerSpaces: Data-
driven Coordination in Peer-to-Peer Networks. In Proc. of ACM Symposium
on Applied Computing (SAC’03), pages 380–386. ACM Press, 2003.

[6] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic Klaim. In Proc. of 7th
International Conference on Coordination Models and Languages (Coordination
04), volume 2949 of LNCS, pages 119–134. Springer Verlag, 2004.

20



[7] Scientific Computing Associates. Linda: User’s guide and reference manual.
Scientific Computing Associates, 1995.

[8] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[9] Daniele Gorla and Rosario Pugliese. Resource Access and Mobility Control
with Dynamic Privileges Acquisition. In , Languages and Programming, 30th
International Colloquium, ICALP 2003, volume 2719 of Lecture Notes in
Computer Science, pages 119–132. Springer, 2003.

[10] Roberto Gorrieri, Roberto Lucchi, and Gianluigi Zavattaro. Supporting Secure
Coordination in SecSpaces. Fundamenta Informaticae. To appear.

[11] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[12] Radu Handorean and Gruia-Catalin Roman. Secure Sharing of Tuple Spaces
in Ad Hoc Settings. In 1st International Workshop on on Security Issues in
Coordination Models, Languages and Systems, volume 85.3 of ENTCS, 2003.

[13] Roberto Lucchi and Gianluigi Zavattaro. WSSecSpaces: a Secure Data-
Driven Coordination Service for Web Services Applications. In Proc. of ACM
Symposium on Applied Computing (SAC’04), pages 487–491. ACM Press, 2004.

[14] A. Murphy, G. Picco, and G.-C. Roman. A middleware for physical and logical
mobility. In 21st International Conference on Distributed Computing Systems,
pages 524–533, 2001.

[15] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for
Agents Interaction and Mobility. IEEE Transactions on Software Engineering,
24(5):315–330, May 1998. Special Issue: Mobility and Network Aware
Computing.

[16] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Formal Specification
and Enactment of Security Policies through Agent Coordination Contexts.
In 1st International Workshop on on Security Issues in Coordination Models,
Languages and Systems, volume 85.3 of ENTCS, 2003.

[17] B. Schneier. Applied Cryptography. Wiley, 1996.

[18] Sun Microsystems, Inc. JavaSpacesTM Service Specification, 2002.
http://www.sun.com/jini/specs/.

[19] Jan Vitek, Ciarán Bryce, and Manuel Oriol. Coordinating Processes with Secure
Spaces. Science of Computer Programming, 46:163–193, 2003.

[20] P. Wyckoff, S.W. McLaughry, and D.A. Ford. TSpaces. IBM System Journal,
August 1998.

21


