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This article is a structured introduction to Intuitionistic Light Affine Logic (ILAL). ILAL has a poly-
nomially costing normalization, and it is expressive enough to encode, and simulate, all PolyTime
Turing machines. The bound on the normalization cost is proved by introducing the proof-nets for
ILAL. The bound follows from a suitable normalization strategy that exploits structural properties
of the proof-nets. This allows us to have a good understanding of the meaning of the § modality,
which is a peculiarity of light logics. The expressive power of ILAL is demonstrated in full detail.
Such a proof gives a hint of the nontrivial task of programming with resource limitations, using
ILAL derivations as programs.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—proof theory

General Terms: Languages, Theory

1. INTRODUCTION

This article deals with implicit polytime computational systems [Girard et al.
1998; Leivant and Marion 1993; Leivant 1994; Girard 1998]. The purpose of
such systems is many-fold . On the theoretical side, they provide a better un-
derstanding about the logical essence of calculating with time restrictions. The
systems that admit a Curry-Howard correspondence [Girard et al. 1989] yield
sophisticated typing systems that, statically, provide an accurate upper bound
on the complexity of the computation. The types give essential information on
the strategy needed to reduce the terms they type efficiently.

A leading paper in this area is Girard’s Light Linear Logic [Girard 1998]
(LLL), a deductive system with cut elimination, that is, a logical system. In
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Asperti [1998], Light Affine Logic (LAL), a slight variation of LLL, was intro-
duced. Roversi [1999] made some basic observations about how to build a proof
of the representation power of LAL, and, indirectly, of LLL as well. This article
is a monolithic reworking of both papers with the hope to make the subject more
widely accessible. The article is designed for people acquainted with basics of
Linear Logic [Girard 1995].

The main results of this article are two theorems about Intuitionistic Light
Affine Logic (ILAL).

THEOREM 1 (COMPLEXITY BOUND OF ILAL). There exists a function f :N×
N→N and a reduction strategy Bρ for a set of basic reduction steps such that,
for every proof-net5, Bρ reduces5 to its normal form in a number of elementary
reduction steps bounded by f (D (5), ∂(5)), being D (5) the dimension of5, and
∂(5) the depth of 5. Moreover, f (D (5), ∂(5)) is a polynomial in D (5), whose
exponent is only function of ∂(5).

THEOREM 2 (REPRESENTATION POWER). There exists a translation ˆ from ev-
ery PolyTime Turing machine T to a proof-net T̂ of ILAL, so that T̂ simulates
T. The depth ∂(T̂ ) of T̂ is a function of the degree of the polynomial that bounds
the length of the computations of T, and never depends on the dimension of the
input.

In more detail, LAL is introduced by adding full weakening to LLL. This
modification both preserves the good complexity property that LAL inherits
from LLL, and greatly simplifies LLL itself. Indeed, the number of rules de-
creases from 21 to just 11 rules, and LAL is endowed with additives, without
adding them explicitly: “free weakening” sounds like “free additive computa-
tional behavior.” Rephrasing Girard [1998], the slogan behind the design of
LAL is: the abuse of contraction may have damaging complexity effects, but the
abstinence from weakening leads to inessential syntactical complications.

1.1 Layout of Article

Section 2 recalls the single-side sequent calculus of LAL, as introduced in
Asperti [1998], with some informal descriptions about its main principles. Sec-
tion 3 restricts the sequent calculus of Section 2 to its intuitionistic form, so
introducing ILAL. The sequent calculus of this section should be looked at as
a traditional tool to speak about ILAL, but it is not our favorite language to
prove the main properties of ILAL itself. To that purpose, we prefer proof-nets,
as defined in Section 4, on which we shall develop computations in terms of ele-
mentary rewriting steps and garbage rewriting steps, as described in Section 5.
Section 6 shows that the proof-nets of ILAL, endowed with the above rewrit-
ing steps, are a good programming language, that is, they are closed under the
normalization, they are confluent, and their normalization has the expected
polynomially bounded cost.

Our next step is to prove that ILAL is expressive enough to represent all the
polynomially computable functions. As anticipated in the theorem above, this is
accomplished by showing the existence of an encoding from the set of PolyTime
Turing machines to ILAL. Of course, it would be possible to write the whole
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Fig. 1. Literals of LAL.

Fig. 2. Formulas of LAL.

Fig. 3. “De Morgan” laws on the formulas.

encoding, using the proof-nets. However, we found that this approach could
not be proposed because the proof-nets hide their sequences of construction,
making it more difficult to read out the programs they represent. So, Sec-
tion 7 introduces an intuitionistic double-side sequent calculus, equivalent to
the single-side one of ILAL, of Section 3. Then, the double-side sequent cal-
culus is encoded by a functional language, which is an extended λ-Calculus,
whose terms are typed by the formulas of ILAL. Section 8 is a first program-
ming example with the functional notation. We develop a numerical system
with a predecessor that is syntactically linear, up to weakening, and that obeys
a general programming scheme, which we shall heavily exploit to encode the
whole class of PolyTime Turing machines as well. Section 9 contains a second
programming example. For the first time, we write all the details to encode
the polynomials with positive degree and positive coefficients as derivations
of ILAL. Section 10 shows the expressive power of ILAL. The proof is a fur-
ther programming exercise. It consists of the definition of a translation from
PolyTime Turing machines to terms of our functional language. For a simpler
encoding, we make some simplifying, but not restricting assumptions, on the
class of PolyTime Turing machine effectively encoded. Section 11 concludes
the paper with some observations and hypothesis on future work.

2. LIGHT AFFINE LOGIC

Light Affine Logic (LAL) is both a variant and a simplification of Light Linear
Logic (LLL). We recall it here below. Let T be a denumerable set of propositional
variables, called literals, as in Figure 1. The literals with form α⊥, for some
α, are negative. All the others are positive. The set F of formulas of LAL is
the language, generated by the grammar in Figure 2, and partitioned by the
equations in Figure 3.

The sequent calculus of LAL is in Figure 4. The judgments have form ` 0,
where 0 (and also 1) denotes a, possibly empty, multi-set of F , and !0 (§0)
denotes the distribution of ! (§) along all the components of 0.
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Fig. 4. Light Affine Logic.

Fig. 5. Formulas of ILAL.

Like in Linear Logic (LL), we may only perform contraction on ?-modal as-
sumptions ?A. However, in LAL (LLL), the potential explosion of the compu-
tation, due to an explosion of the use of (c)-rules, is taken under control. This is
achieved by means of two simultaneous restrictions on LL. First, every (!)-rule
has at most one assumption. So, the duplication of an instance r of a (!)-rule, as
effect of the cut elimination, can produce at most one instance of the duplicating
(c)-rule, used to contract the assumption of r, if any. Second, the dereliction of
an occurrence r of a (!)-rule, which keeps its premise, while deleting r, is com-
pletely banned from LAL (LLL). Namely, any of the logical rules of LAL (LLL)
cannot change the number of instances of (!)-rules following it, as effect of the
cut elimination. This mechanism becomes evident by adopting the proof-nets
for the sequent calculus in Figure 4.

The two, just described, restrictions enormously decrease the overall expres-
sive power, which is recovered by introducing a modality § by a (§)-rule. Like
in LLL, § is self-dual. A (§)-rule may use multiple occurrences of ?-modal as-
sumptions. To prevent the explosion of the occurrences of (c)-rules, as the cut
elimination proceeds, LAL (LLL) cannot contract any §-modal formula. Namely,
any occurrence of a (§)-rule can be duplicated.

The intuitive description about how LAL (LLL) controls the cut elimination
complexity, never mentioned (w)-rule. The point about LAL is as follows: the un-
restricted weakening does not falsify any of the previously described intuitions.

3. INTUITIONISTIC LIGHT AFFINE LOGIC

This section focuses our attention on Intuitionistic Light Affine Logic (ILAL),
by restricting the sequent calculus in Figure 4. We start by the same set of
literals as in Figure 1 to define the set I, which extends F . The grammar of
I is in Figure 5, and I is partitioned by the set equations in Figure 6, which
extends the set in Figure 3.
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Fig. 6. “De Morgan” laws on the formulas of ILAL.

Fig. 7. Intuitionistic Light Affine Logic.

The sequent calculus of ILAL is in Figure 7. Its judgments have form ` 0; A,
where 0 may be empty. Of course, the single-side sequent calculus in Figure 7
can be related to a single-side calculus as follows. Define the injection ? : I → I,
as in Figure 8. Then, prove:

LEMMA 3.1. ` 0; A if, and only if, (0?)⊥ ` A?, provided that both (0?)⊥ and
A? are free of occurrences of the negation ⊥.

Observe that requiring (0?)⊥ and A? to be free of ⊥ means that the single-
side sequent calculus we have in mind inductively builds usual Linear logic
formulas, (of course, extended with those containing the logical operator §),
starting from a set of positive literals {α, β, . . . }, using⊗,(, ∀, !, §. So, any issue
related to the self-duality of § gets forgotten. However, at least for the moment,
we stick to the intuitionistic single-side sequents because it is directly related to
the structure of the proof-nets for ILAL of Section 4. Recall that the proof-nets
are our favorite language to prove that ILAL can be used as a programming
language with a polynomial normalization cost. In Section 7, we shall move
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Fig. 8. From double to single-side sequents, and vice-versa.

Fig. 9. The vertices of the oriented graphs of G.

to the more traditional double-side sequent calculus to design a term calculus,
which we shall exploit as a compact representation of the proof-nets.

4. THE PROOF-NETS

This section adapts the technology of proof-nets, given for usual LL, to our
purposes. Our references are mainly Tortora [2000b; 2000a], which give an ex-
haustive reworking and extensions of previous results about proof-nets for LL.

Focus on the language G of oriented graphs such that:

—the vertices of the graphs are in Figure 9. The solid and hollow circles are the
polarized ports of the vertices: a solid circle denotes positive ports. The others
are negative. The arcs entering a port of a node are its assumptions. Those
exiting a port of a node are its conclusions. The number of premises of a node
is its indegree. The conclusions are as many as the value of the outdegree.

—the oriented arcs of the graphs are labeled by the formulas of I, and they
only connect ports with the same polarity, according to the indegree and to
the outdegree of the vertex.

Note that, from positive ports, it does not necessarily exit an arc. “Node” and
“vertex” are two interchangeable words, like “arc” and “edge.” The notion of
ports/premises/conclusions obviously extends to any graph of G. When drawing
graphs, if the label of a port is a multi-set of formulas, that port is, in fact, a set
of ports.
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Fig. 10. A !-box.

Fig. 11. A §-box.

Definition 4.1. A proof-structure of ILAL is a graph G of G such that:

(1) every edge of G is conclusion of a unique node, and is premise of at most
one node;

(2) G may contain !-boxes. A !-box is a subgraph G ′ of G that can be depicted
as in Figure 10, where:
—the conclusion of exactly one !-node is the principal port of G ′;
—at most one ?-node can be the secondary port of G ′;
—the graph G ′′ in G ′ is a proof-structure;

(3) G may contain §-boxes. A §-box is a subgraph G ′ of G that can be depicted
as in Figure 11, where:
—the conclusion of exactly one §+-node is the principal port of G ′;
—the remaining ports of G ′ are secondary and must be partitioned into two,

possibly empty, sets. Every port of the first set must be the conclusion of
a §−-node. Every port of the other set, must be the conclusion of a ?-node;

—the graph G ′′ in G ′ is a proof-structure;

(4) G cannot contain !-nodes, ?-nodes, §+-nodes and §−-nodes not associated to
a !-box or to a §-box;

(5) every pair of boxes is either disjoint or one is included into the other;
(6) every ∀-node of G binds a distinct variable, its eigenvariable. Every eigen-

variable is subject to the following constraints:
—it cannot occur free in the formulas labeling the conclusions of G;
—if α is the eigenvariable of some ∀-node, contained in a box B, then every

occurrence of α must be in B;

(7) every occurrence of a w-node has a jump associated with it. A jump is an
occurrence of any of the nodes of G.

Definition 4.2. Any node n of a given proof-structure depends (on an eigen-
variable) α if α is free in the formula labeling one of the premises of n.

ACM Transactions on Computational Logic, Vol. 3, No. 1, January 2002.



144 • A. Asperti and L. Roversi

Fig. 12. A net peculiar of ILAL.

Note that an ∃-node depends on α if its premise is labeled by A[B/β], and α is
free in B.

Definition 4.3. Any node n of a given proof-structure is at depth d if n is
enclosed in d boxes.

The maximal depth ∂ of a proof-structure is the maximal depth of its nodes.

Obviously, the depth extends to the edges and the boxes of a proof-structure.

Definition 4.4. A switching graph S(5) of a proof-structure 5:

(1) contains all the nodes of 5 at level 0, and
(2) in place of every box (either ! or §) at level 0 in 5, contains an instance of

an h-node with as many ports as the box.
(3) the edges of S(5) are unoriented and:

(a) every node(, ℘, c of S(5) has only one of its two premises it had in 5;
(b) for every w-node n, the jump from n to a node m of 5 becomes an edge

between n and m in S(5);
(c) for every ∀-node n, S(5) has either the edge premise of n, or its has an

edge between n and one of the nodes of5 that depend on the eigenvari-
able of n.

Definition 4.5. A proof-structure 5 is a proof-net when:

(1) every S(5) is both connected and acyclic, and
(2) the proof-structure of every box of 5 at level 0 is a proof-net.

THEOREM 4.6 (SEQUENTIALIZATION). Let 5 be a proof-net whose ports are la-
beled by the formulas in 0, A, being A positive, and, every formula of 0, negative.
Then, ` 0; A is derivable in the sequent calculus of ILAL.

The proof is step-wise coincident to the proof of sequentialization for LL,
as presented in Tortora [2000b; 2000a], except for the additives, which are not
present in ILAL. We just want to comment about what happens, relatively to
the differences between the proof-nets of ILAL and of LL. Every jump in LL is
between a w-node and an ax-node. In ILAL, we allow jumps from an instance
m of a w-node to any other node n. First, forgetting about the additives of LL,
this results in a larger set of legal proof-structures: Figure 12 shows an ILAL
proof-net, without a correspondent in LL. Liberalized jumps simply say that,
in the sequent calculus, a (w)-rule can be used immediately after the rule that
introduces n, during the sequentialization. Another difference between LL and
ILAL is that the premises and the conclusions of the ?-nodes in a box of LL
are labeled by the same formula, unlike ILAL. However, the sequentialization
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Fig. 13. The linear ers.

proceeds inductively: every !-box B corresponds to a well-formed derivation of
ILAL, that concludes by an instance r of a (!)-rule. The form of the premises
of the proof-net inside B, which coincides with those of r, are uninfluential to
the sequentialization that keeps building a well-formed derivation below r. The
same is true for §-boxes. Finally, the polarization only needs to map a positive
port to the unique positive formula of the sequent and negative ports to the
negative formulas, when sequentializing.

5. THE NORMALIZATION OF THE PROOF-NETS

The elementary reduction steps, also called elementary rewriting steps, and ab-
breviated as ers, are in Figures 13, 14, and 15. Figures 16 and 17, instead,
introduce the garbage collecting steps ( gcs).

Figure 13 introduces the linear ers. The first and second ers in Figure 13
describe how the pairs of nodes ⊗/℘ and(/(⊥ annihilates. The third one is
the annihilation of the pair ∀/∃, subject to: 5′ is 5 where B replaces every free
occurrence of the eigenvariable α.

Figure 14 introduces the shifting ers, where ( A)⊥ ≡ ?A⊥, and, if ♦ ≡ !, then:
(i) ? ≡ ?, (ii) the nodes represented by n cannot exist, and (iii) if m exists, it is a
single !-node. Otherwise, if ♦ ≡ §, then: (i) ? ∈ {?, §−}, and (ii) the sequences of
nodes, represented by both m and n, exist according to the formation rules of !
and §-boxes.

Figure 15 defines the polynomial ers that only duplicates !-boxes. Observe
that the contraction on the ports labeled with ?B cannot exist if the !-box does
not have such ports.

Figure 16 defines the first set of gcs. The first gcs replaces a cut-node, followed
by an ax-node, with a link. The symmetric configuration, with an ax-node,
followed by a cut-node, originates a gcs as well, with the same behavior. The
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Fig. 14. The shifting ers.

Fig. 15. The polynomial ers.

second gcs requires ( A)⊥ ≡ ?A⊥. It generalizes the standard rewriting step
that, in LL, only erases the !-boxes. Note that the graph resulting from the
step is a sequence of as many w-nodes as the components of 0. However, the
unconstrained weakening of ILAL requires the simplification of a number of
new configurations, with respect to the proof-nets of LL, to get to a cut-free
proof-net of ILAL. In particular, for preserving the structural invariance that
a cut-node plugs together positive and negative ports of a net, the third gcs in
Figure 16 exploits an h-node with a single conclusion. Observe also the last gcs,
where a pair h/w annihilates.

Figure 17 defines the second, and last, set of gcs, which can be viewed as
complementary to those in Figure 16, and such that (?A)⊥ ≡ A⊥.

As usual, a redex is the graph to the left of an ers, or of a gcs, while a reduct is
the graph to its right. If not otherwise stated, we write rewriting steps, meaning
all the ers and the gcs in the set ers∪ gcs. A net5 is B-normal, or simply normal,
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Fig. 16. The gcs relative to the w-nodes.

if it cannot be rewritten by any rewriting step. Also, a net is linear-normal if it
cannot be rewritten by any linear ers. Analogous definitions apply to shift ers,
poly ers, and to gcs.

6. THE PROPERTIES OF THE NORMALIZATION

This section shows that a suitable set of proof-nets can be used as a program-
ming language with the expected costs. From now on:

“proof-nets” means the nets free of h-nodes with negative ports.

This restricted set of proof-nets is closed under B, which can reduce every
proof-net 5 to a unique normal form, in a number of B steps bounded by a
polynomial in the dimension of 5. We shall also explicit the relation between
the proof-nets and the single-side sequent calculus of ILAL, with respect
their dynamics.
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Fig. 17. The gcs relative to the h-nodes.

6.1 Stability under rewriting

THEOREM 6.1. The set of proof-nets of ILAL is closed under B.

PROOF: The proof is divided into two parts. The rewriting steps must pro-
duce proof-nets whose h-nodes are free from negative ports, and whose switch-
ing graphs are connected and acyclic. The first requirement holds by definition
of rewriting steps. The proof relative to the switching graphs is step-wise coin-
cident to the analogous proof for LL, as presented in Tortora [2000b; 2000a],
except for both additives and gcs. Additives are not an issue, since they are
not in ILAL. Let us focus on gcs, for proving that they transform proof-nets in
proof-nets. For every gcs in Figure 16 and for the last three gcs in Figure 17,
this can be proved by assuming the existence of a proof-structure, with a reduct
in it, that cannot be a proof-net, because some of its switching graphs is cyclic or
unconnected. This assumption, however, implies that the proof-structure, con-
taining the corresponding redex, could not be a proof-net as well. Finally, focus
on the first two gcs in Figure 17. They introduce w-nodes not initially present
in the redex. The connectivity of the switching graphs holds due to the jump
between the new w-nodes and the h-nodes, labeled ♦B in the first gcs and B in

ACM Transactions on Computational Logic, Vol. 3, No. 1, January 2002.



Intuitionistic Light Affine Logic • 149

Fig. 18. Some cut-elimination steps at work.

the second one. Acyclicity follows from the acyclicity of the (switching graphs)
of the proof-net, before the reduction of the gcs.

6.2 Relating the Normalization of the Proof-nets and of the Sequent Calculus

THEOREM 6.2. Let π be any derivation of ` 0; A. Assume5π be the proof-net
that corresponds to π, in accordance with Theorem 4.6. Let also5′ be any proof-
net such that 5π reduces to, after some rewriting steps. If π ′ corresponds to 5′,
according to Theorem 4.6, then there exists a sequence of cut elimination steps
that transforms π into π ′.

We leave as an exercise to the reader to make explicit all the cut-elimination
steps on the sequent calculus, and the details of the proof. The statement
can be proved by showing that it holds case by case, on the definition of the
rewriting steps.

Here, we want to detail out an example to show why the following statement
does not hold:

Let π and π ′ be two derivations of ` 0; A. Call 5π and 5′π the two
proof-nets, corresponding to π and π ′, respectively, in accordance with
Theorem 4.6. If π reduces to π ′, by some cut elimination steps, then
5π normalizes to 5′π , by means of some rewriting steps.

Look at Figures 18, and 19. The assumptions are that 5π corresponds to π
and that the uppermost derivation of Figure 18 corresponds to the uppermost
proof-net in Figure 19. Observe that the normalization of the topmost proof-
net in Figure 19 does not yield a proof-net corresponding to the lowermost
derivation that we can obtain after some cut elimination steps, applied to the
derivation in Figure 18. The reason is that the proof-nets erase structure using
a node-by-node process, while the sequent calculus can also erase blocks of
derivations at once. However, we want to remark that the sequent calculus can
be as fine-grained as the proof-nets when erasing structure, due to its (h)-rule.
This is why the Theorem 6.2 holds; namely, from the dynamic point of view, the
sequent calculus can always copy what the proof-nets do.
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Fig. 19. Some garbage collecting steps at work.

6.3 Complexity Bounds

This section proves the existence of a strategy for the rewriting steps that
normalizes every proof-net 5 in a number of rewriting steps, bounded by a
polynomial in the dimension of 5. The bound is:

O(D6∂ (5)),

being D (5) the dimension of 5, and ∂ the maximal depth of 5.

Definition 6.3. Let 5 be a proof-net, and l ≤ ∂.

—The dimension of 5 at level l , denoted by dl (5), is the number of nodes in
Figure 9 at level l ;

—The dimension D (5) is simply
∑∂

l=0 dl (5).

In absence of ambiguities, 5 is omitted.

The complexity bound holds for a specific reduction strategy, which will be
introduced after some lemma and definitions.

Definition 6.4. Let 5 be a net, and l ≤ ∂. 5 is l -normal if:

—5 is linear-normal at every level 0 ≤ i ≤ l ,
—5 is both shift and poly-normal at every level 0 ≤ i ≤ l − 1,
—5 gcs-normal at every level 0 ≤ i ≤ l − 1.

The reason why we differentiate between the second and the third clause in
the definition here above lies in the definition of the reduction strategy we shall
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Fig. 20. Linear weight of the nodes.

Fig. 21. The weight of the links: The base case.

find in Definition 6.10. Intuitively, the reduction strategy alternates blocks of
linear reduction steps with blocks of both shifting and polynomial reduction
steps. Every block may produce some garbage whose elimination simplifies the
proof of the result about the complexity of the whole strategy. So, we need to
explicitely express when a given level is gcs-normal.

Definition 6.5. Let 5 be an l − 1-normal proof-net. The leftmost column of
the table in Figure 20 defines the linear weight (lwgt) of every (instance) of the
nodes of 5, at level l .

The linear weight at level l of5 (lwgtl (5)) is the sum of all the linear weights
of its nodes at l , in accordance with Figure 20.

FACT 6.1. Let l ≤ ∂(5), for some 5. Assume that 5 rewrites to 5′ through a
linear ers or through a gcs at level l . Then, lwgtl (5) > lwgtl (5′).

It is enough to check that the relation holds for every ers and gcs in Figures 13,
16, and 17.

LEMMA 6.6. Let l ≤ ∂(5), for some 5. The linear ers at level l , together
with the gcs, applied at the same level, are strongly normalizing, after, at most,
3dl (5) steps.

Strong normalizability is the direct consequence of Fact 6.1. The bound holds
because we cannot perform more linear ers and gcs than the value of lwgtl (5),
which is at most 3dl (5).

Now, we focus on the normalization of shift and poly ers. We need to associate
a shift/poly weight to every node and arc.

Definition 6.7. Let 5 be an l -normal proof-net, with l ≤ ∂. The shift/poly
weight of 5 at level l spwgtl (5) is a partial function from the nodes and the
links of 5 at level l to N. Let x be any link of 5 at level l :

—spwgtl (5)(x) = 0 if either x is a port of 5, or it is the premise of one of the
nodes ℘, ∃, ?, §−, or it is the negative premise of one of the nodes(,(⊥, as
in Figure 21;
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Fig. 22. The weight of the links: The identity case.

Fig. 23. The weight of the links: The box case.

—spwgtl (5)(x) = spwgtl (5)( y) if x is the positive port of either an ax-node or
of a cut-node, and y is the negative port of one of the same nodes, as in
Figure 22;

—spwgtl (5)(x) = spwgtl (5)( y) if x is one of the premises of a c-node and y is
the conclusion of the same c-node, as in Figure 22;

—spwgtl (5)(x) = 1+ spwgtl (5)( y) if y is a secondary port of some !-box, and x
the principal port of the same !-box, as in Figure 23. If x is the unique port
of the !-box, then spwgtl (5)(x) = 1;

—spwgtl (5)(x) = 1+∑m
i=1 spwgtl (5)( yi) if yi is a secondary port of some §-box,

and x the principal port of the same §-box, as in Figure 23. If x is the unique
port of the §-box, then spwgtl (5)(x) = 1.

Let n be any node of 5 at level l :

—spwgtl (5)(n) = spwgtl (5)(x) if n is a !/§+-node and x its conclusion;
—spwgtl (5)(n) = (spwgtl (5)( y))2 if n is a c-node and y its conclusion;
—spwgtl (5)(n) = 1 if n is either an ax or a cut-node.

spwgtl (5) is undefined on any other link and node.

The definition here above tells us that every contraction node is as “heavy”
as the shift/poly weight of the net, rooted at its conclusion. In particular, the
links whose shift/poly weight is 0 are those where a c-node stops moving down,
through a net, during the normalization.

Definition 6.8. Call “poly gcs” the two first gcs in Figure 16.

The meaning of the definition here above must be looked for in the details
of the definition of the strategy, whose building blocks are the rounds, which
are going to be introduced in Definition 6.10. Intuitively, the poly gcs are the
only garbage collecting steps that a block of shifting and polynomial rewriting

ACM Transactions on Computational Logic, Vol. 3, No. 1, January 2002.



Intuitionistic Light Affine Logic • 153

steps, applied at level l − 1 may originate, starting from a proof-net that is
l − 1-normal. All this is formalized by Fact 6.3 below.

By the definition of shift ers:

FACT 6.2. Let 5 be l − 1-normal, with l ≤ ∂. If the reduction of a shift ers
in 5 at l − 1 creates a new redex, it is at level l .

FACT 6.3. Let5 be l−1-normal, with l ≤∂. The reduction of poly ers at level
l − 1 can only create new shift/poly ers and new poly gcs at l − 1.

For proving this, it is enough to assume the possibility to create some other
kind of redex in 5. This would contradict that 5 was l -normal.

FACT 6.4. Let 5 be l − 1-normal, with l ≤∂. Assume that 5 rewrites to
5′ through a shift/poly ers or a poly gcs at level l − 1. Then, spwgtl−1(5)>
spwgtl−1(5′).

For proving Fact 6.4, it is enough to check that the relation holds for every
of the mentioned ers and gcs in Figures 14, 15, and 16, exploiting Facts 6.2
and 6.3 to assure that we shall never need to evaluate the undefined weight of
some node.

LEMMA 6.9. Let5 be l−1-normal, with l ≤ ∂. The shift/poly ers at level l−1,
together with the poly gcs, applied at the same level, are strongly normalizing
in a number of steps which is O(d3

l−1(5)).
Let rewrite5 into5′ which is both shift/poly normal and gcs normal at level

l − 1. Then, d j (5′) is O(dl−1(5) · d j (5)), for every level l − 1 ≤ j ≤ ∂ (5′).

Strong normalizability is the direct consequence of Fact 6.4. The bound holds
because, for every c-node, we cannot perform more poly ers than the value of
spwgt2

l−1(5), which cannot be greater than d2
l−1(5). Since the c-nodes cannot

be more than dl−1(5), the total number of poly ers is, at most d3
l−1(5). Now,

firstly observe that every poly ers adds two nodes at level l − 1. Due to Fact 6.2
and 6.3, at most dl−1(5) c-nodes, each generating at most 2dl−1(5) redexes,
yield a quadratic overhead of shift ers and poly gcs to be reduced, besides the
cubic bound for poly ers. This gives the normalization bound O(d3

l−1(5)). Second,
besides adding two nodes at l , every poly ers doubles a !-box. Iterating this
duplication at most dl−1(5) times for each c-node, it yields d j (5′) ≤ dl−1(5) ·
d j (5), for every l − 1 ≤ j ≤ ∂ (5′).

Lemmas 6.6 and 6.9 justify the definition of the reduction rounds:

Definition 6.10. Let 5 be l − 1-normal, with 0 ≤ l ≤ ∂. A reduction round
Bl
ρ on 5 at l reduces the rewriting steps in the following order:

(1) all the shift/poly ers and poly gcs at l − 1, in any order,
(2) all the linear ers and gcs at l , in any order.

Then, Bl
ρ stops.

Note that l = 0 in the definition above means that we do not apply point (1),
because 5 does not have negative levels.
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LEMMA 6.11. Let 5 and 5′ be such that 5 is l − 1-normal, with 0 ≤ l ≤ ∂,
and 5Bl

ρ 5
′. Then:

(1) 5′ is l -normal;
(2) The length of the reduction 5Bl

ρ 5
′ is O(D3(5));

(3) d j (5′) is O(D2(5)), for all l − 1 ≤ j ≤ ∂.

The first point is true by Definition 6.10 of Bl
ρ , due to Lemmas 6.6 and 6.9. The

second and the third points are a consequence of Lemma 6.9, where dl−1(5)
and d j (5), for every l − 1 ≤ j ≤ ∂(5′), are certainly smaller than D (5).

THEOREM 6.12. Every proof-net 5 of ILAL can normalize in O(D6∂ (5))
steps.

Due to Lemma 6.11, iterating the rounds from the lower level to the upper one
on 5, we have:

5 ≡ 50 B0
ρ · · ·Bi−1

ρ 5i Bi
ρ5i+1 Bi+1

ρ · · ·,

where 5i rewrites in 5i+1, using O(D3(5i)) steps. So, 5i is obtained after:

O

(
i−1∑
k=0

D6k
(5)

)
(1)

rewriting steps. The reduction sequence here above cannot be longer than ∂(5)
because ers and gcs are, level by level, strongly normalizing. In particular, it is
shorter if some gcs erases, at some point, the last box constituting the level ∂
of 5. So, the upper limit of (1) is ∂(5). Due to the following relations:

∂(5)−1∑
k=0

D6k
(5) ≤

6∂(5)∑
k=0

D k(5) ≤ D6∂(5)+1(5)− 1
D (5)− 1

,

we can conclude that 5 normalizes in, at most, O(D6∂ (5)) steps.

6.4 Confluence

Finally, we prove that the proof-nets can be used as a programming language:

THEOREM 6.13. The set of normal forms of every proof-net of ILAL is a
singleton.

The proof follows a classical scheme, based on local convergence and strong
normalizability. To that aim:

Definition 6.14. For every 0 ≤ l ≤ ∂ (5), 5′ is an l-normal form of a proof-
net 5, if 5 ≡ 50 B0

ρ · · ·Bl
ρ 5l+1 ≡ 5′.

Observe that 5′ here above is l -normal, due to Lemma 6.11. Moreover, it
is (boring but) simple to check the local confluence of the rewriting steps in
ers∪ gcs:
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Fig. 24. The patterns for the concrete syntax.

Fig. 25. The concrete syntax.

LEMMA 6.15. If5 rewrites in a single rewriting step to both51 and52, then
there is 53 to which both 51 and 52 rewrite after some, possibly none, steps.

At this point, a simple inductive argument implies the proof of Theorem 6.13.
Let l = 0, and assume the existence of two 0-normal forms 51 and 5′1 of 5.
This would contradict the absence of critical pairs, among the linear ers and
the gcs, as proved by Lemma 6.15. If l > 0, by induction, 5l is the unique
l − 1-normal form of 5. The assumption of the existence of two l -normal
forms 5l+1 and 5′i+1 such that both 5l Bl

ρ 5i+1 and 5l Bl
ρ 5
′
i+1 would again

contradict Lemma 6.15, because such an hypothesis would require the exis-
tence of some critical pair among the whole set of rewriting steps. Hence, 5′ in
5 ≡ 50 B0

ρ · · ·B∂ (5)
ρ 5∂ (5)+1 ≡ 5′ is unique.

This concludes the part of the paper devoted to proving the complexity prop-
erty of ILAL. The next part is about showing it expressive power.

7. A FUNCTIONAL SYNTAX WITH ITS TYPE ASSIGNMENT

This section is about relating ILAL to a functional language. The goal is to
supply a compact functional language to talk about proof-nets. The way to carry
out this relation is to encode a double-side sequent calculus for ILAL by means
of a functional syntax. Of course, the double-side sequent calculus is equivalent
to the single-side one in Figure 7, due to the relation outlined by the injection
in Figure 8 and Lemma 3.1.

We start by introducing the raw terms of our functional syntax which con-
tains patterns for pattern matching. The grammar of the terms is in Figure 24.
The convention is that the set of patterns is ranged over by P, while Tvariables
is ranged over by x, y , w, z.

Figure 25 defines the set 3 of the terms which we take as functional syntax.
For any pattern x1⊗· · ·⊗xn, the set FV(x1⊗· · ·⊗xn) of its free variables is

{x1, . . . , xn}. As usual, λ binds the variables of M so that FV(λP.M ) is FV(M )\
FV(P). The free variable sets of all the remaining terms are obvious as the
constructors⊗, !, §, !, and §̄ do not bind variables. Both ! and § build !-boxes and
§-boxes, respectively, being M the body. The term, constructor !, can mark one
of the entry points, namely the inputs, of both !-boxes, and §-boxes, while §̄ can
mark only those of §-boxes.

We shall adopt the usual shortening for λ-terms: λx1 · · · λxn.M is abbreviated
by λx1 · · · xn.M , and (M1 · · · (MnN ) · · · ) by M1 · · ·MnN , that is, by default, the
application is left-associative.

The elements of 3 are considered up to the usual α-equivalence. It allows
the renaming of the bound variables of a term M . For example, !(λx.(! y) x) and
!(λz.(! y) z) are each other α-equivalent.
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The substitution of M for x in N is denoted by N [M/x]. It is the obvious
extension to 3 of the capture-free substitution of terms for variables, defined
for the λ-Calculus. For example, y[x/ y ] yields x.

The substitutions can be generalized to [M1/x1 · · · Mn/xn], which means the
simultaneous replacement of Mi for xi, for every 1 ≤ i ≤ n.

We shall use ≡ as syntactic coincidence.

7.1 The Type Assignment

The goal of the type assignment is to associate a logical formula to a term
that belongs to a suitable subset of 3. The logical formula must be inductively
built by ⊗,(, ∀, !, §, starting from the set of positive propositional variables
{α, β, γ , . . . }. The previously mentioned subset of 3 contains the terms that
encode a deduction of a double-side sequent calculus, equivalent to the one in
Figure 7, under the injection in Figure 8 and Lemma 3.1.

To formally introduce the type assignment, we need to set some terminology.
Call basic set of assumptions any set of pairs {x1 : A1, . . . , xn : An} that can

be seen as a function with finite domain {x1, . . . , xn}. Namely, if i 6= j , then
xi 6= x j .

An extended set of assumptions is a basic set, containing also pairs P : A, that
satisfies some further constraints. A pattern P ≡ x1⊗· · ·⊗xm : A belongs to an
extended set of assumptions:

(1) if A is A1 ⊗· · ·⊗ Ap, with p ≥ m, and
(2) if {x1 : B1, . . . , xm : Bm} is a basic set of assumptions, where every Bi is either

a single formula, or tensor of formulas.

For example, {x : γ , y :β} is a legal extended set, while {z ⊗ x : γ , y : β} is not.
Talking about “assumptions”, we generally mean “extended set of assump-

tions.” Meta-variables for ranging over the assumptions are 0, and 1.
The substitutions on formulas replace formulas for variables in the obvious

way.
Figure 26 introduces the double-side sequent calculus of ILAL, with term

decorations. As a remark, the two rules for the second-order formulas are not
encoded by any term. Namely, we introduce a system analogous to Mitchell’s
language Pure Typing Theory [Mitchell 1988]. In our case, the logical system of
reference is second order ILAL, in place of System F [Girard et al. 1989].

7.2 The Dynamics for the Functional Syntax

We introduce 3 because we want to use it as a program notation in place of the
proof-nets. The reason is to have a more readable syntax. Indeed, the syntax
is essentially a standard λ-Calculus enriched with notation to take care of the
box borders.

The correct way to use the functional language is formalized by Theorem 6.2,
and is summarized in Figure 27. The functional language constitutes the read-
able form of input and output in a programming session, where the computa-
tions are developed by exploiting the proof-nets.
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Fig. 26. Double-side sequent calculus and functional terms.

Fig. 27. How to use the functional terms to program.

Fig. 28. The rewriting relations for the functional syntax.

However, to keep things at a more intuitive level, we propose a detour with
respect to the path in Figure 27, by introducing a dynamics directly on the
functional language.

Figure 28 defines the basic rewriting relations on 3.
The first relation is the trivial generalization of the β-rule of λ-Calculus

to abstractions that bind patterns that represent tuples of variables. The α-
equivalence must be used to avoid variable clashes when rewriting terms. The
second rewriting relation merges the borders of two boxes.

Finally, define the rewriting system ; as the contextual closure on 3 of the
rewriting relations in Figure 28. Its reflexive, and transitive closure is ;∗. The
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Fig. 29. Two derivations for the same term.

Fig. 30. The tally integers.

pair (3, ;) is the functional language we shall use to show the expressive power
of ILAL. We shall generally adopt an abuse of notation by referring to such a
language only with 3.

7.3 Comments on the Concrete Syntax

We are going to use3 to encode the PolyTime Turing machines in ILAL. As, to
develop examples, we shall compute on the terms of 3, we insist recalling that:

the functional language we are going to introduce is by no means a
substitute for the proof-nets.

Indeed, the mismatch between the normalization of the single-side sequent
calculus and the proof-nets, as outlined in both Figure 18 and Figure 19,
still exists, when adopting the functional language in place of the single-side
sequent calculus. However, the mismatch is limited to the parts of the pro-
grams that get erased by the computation. So, we can safely keep observing
the transformations of the functional terms, under ;, to get the main intu-
itions about how the polynomially costing computation effectively develop on
the proof-nets. However, we insist saying that all those who want to appreciate
the details must program directly with the proof-nets.

Moreover, we have to pay for the notational economy of 3, that, for example,
represents the logical contraction by multiple occurrences of the same vari-
able. This introduces an ambiguous representation of ILAL by means of 3.
For example, see Figure 29. The same term §(K §̄z §̄z) “encodes” two radically
different derivations of the sequent calculus, which is equivalent to saying that
§(K §̄z §̄z) “encodes” two structurally different proof-nets.

Such an ambiguity is not an issue for us, since, once more, the concrete
syntax is not meant to be a real calculus, as outlined in Figure 27. We only need
to agree about the translation from 3 to the nets. We choose the one putting
the contractions as deeply as possible. This choice reduces the computational
complexity of the translation.
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Fig. 31. Some combinators on the tally integers.

Fig. 32. Calculating the numeral next to n̄.

8. ENCODING A NUMERICAL SYSTEM

The numerical system adopted on 3 is the analogous of Church numerals for
λ-Calculus.

The type and the terms of the tally integers are in Figure 30. Observe that
there is a translation from 3 to λ-Calculus that, applied to 0̄ and n̄, yields
λ-Calculus Church numerals:

λ f x. f (. . . ( f︸ ︷︷ ︸
n≥0

x) . . . )).

The translation just erases all the occurrences of !, §, !, and §̄.
Figure 31 introduces some further combinators on the numerals. To support

intuition about how the computation develops, the numeral next to n̄ can be
calculated as in Figure 32. sum adds two numerals. iter takes as arguments a
numeral, a step function, and a base where to start the iteration from. Observe
that iter 2̄ !n̄ §0̄ cannot have type, for any numeral n̄. This is because the step
function is required to have identical domain and co-domain. This should not
surprise. Taking the λ-Calculus Church numeral 2̄, and applying it to itself, we
get an exponentially costing computation.

mult is defined as an iterated sum, for multiplying two numerals.
Finally, coerc(ion) embeds a numeral into a §-box, preserving its value. See

Figure 33 for an example.

8.1 Encoding a Predecessor

The predecessor of the numerical system for 3 is an instance of a general
computation scheme that iterates the template function in Figure 34. T
takes a pair of functions h, g as arguments, and has f as its parameter. If
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Fig. 33. Coercion of n̄ to §n̄.

Fig. 34. Template function for the predecessor.

Fig. 35. Iterating the template function.

Fig. 36. The predecessor.

Fig. 37. Correspondence between T and T .

h : X → Y , g : Y → Z , and f : Z → Z , for some domains X , Y , Z , then T f can
be iterated. An example of an n-fold iteration of T f from (g , h) is in Figure 35,
where it is simple to recognize the predecessor of n, if we let f :N → N be
the identity, g :N→ N be the successor, h be 0, and if we assume to erase the
first component of the result. Recasting everything in 3, we get the definitions
in Figure 36.

The term, pred, iterates w times !(step !x) from I ⊗ y , exploiting the corre-
spondence between T and T in Figure 37. Observe also that our predecessor
does not make any explicit use of the encoding of the additive types by means of
the second-order quantification. In Asperti [1998], the predecessor has a some-
what more intricate form that we recall here:

λnx y .(n (λp.(U I x (p snd))) (UI I y) fst), (2)
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Fig. 38. General iteration scheme: the logical structure.

Fig. 39. Getting the standard iteration scheme.

where:

U P Q R = λz.(z P Q R)
fst = λx yz.(x z)

snd = λx yz.( y z).

pred is obtained by eliminating the nonessential components of (2) above.
Both pred and (2) are syntactically linear, and so also their complexity is

readily linear. On the contrary, the usual encoding of the predecessor, that,
using λ-Calculus syntax with pairs 〈M , N 〉, is:

λnx y .fst (n (λp.〈snd (p), x snd (p)〉) 〈 y , y〉), (3)

has also an exponential strategy. Such a strategy exists because the term is
not syntactically linear. However, both pred and (2) witness that the nonlin-
earity of (3) is inessential. In particular, in Girard [1998], where Girard em-
beds (3) in LLL, the sub-term λp.〈snd (p), x snd (p)〉 here above has the ad-
ditive type (α&α) ( (α&α). This means that, at every step of the iteration
n (λp.〈snd (p), x snd (p)〉) 〈 y , y〉, only one of the multiple uses of p is effectively
useful to produce the result.

Remark 8.1

—The procedural iteration scheme in Figure 35, our predecessor is an in-
stance of, was already used in Roversi [1998]. However, by reading Danos
and Joinet [1999], we saw that the iteration in Figure 35 actually “im-
plements” a general logical iteration scheme, which we adapt to ILAL in
Figure 38. There, the term M must contain g h, the argument of nT f . The
more traditional iteration scheme can be obtained from Figure 38 by letting
!1, y : §(A ( A) ` M : B be the conclusion of the derivation in Figure 39.
Observe that the instance of M we use for our predecessor is not as simple
as §( §̄w N ).

—We want to discuss a little more about the linearity of the additive structures.
Not sticking to any particular notation, let fxy = fst〈x y , x y〉. The function f
is just the identity, and it would get a linear type in ILAL. Now, consider an
n-fold iteration of f by means of a Church numeral n̄ . Then, let us apply the
result to a pair of identities. We have just defined g f n = ((n f ) I ) I . This
term is typable in ILAL. So, in ILAL, g f n normalizes with a polynomial
(in fact linear) cost. However, try to reduce gf n in most traditional lazy
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Fig. 40. Vector of vectors of variables.

call-by-value implementations of functional languages, like SML, CAML,
Scheme, etc. and you will discover that the reduction has an exponential cost.
So, first, if a usual λ-term M can be embedded in ILAL, then, in general, it is
not true that M normalizes with a polynomial cost under any reduction strat-
egy. We only know that there exists an effective way to normalize M with a
polynomial cost. The polynomial reduction, in general, is not compatible with
the lazy call-by-value reduction.
However, consider again gf n = ((n f ) I ) I . Its lazy call-by-name evaluation
has a linear cost. We leave the following open question: is it true that, taking
a typable term M , having a polynomially costing reduction strategy, then
that strategy can be the lazy call-by-name?

9. ENCODING THE POLYNOMIALS

In this section, we show how to encode the elements ofP, that is, the polynomials
with positive degrees, and positive coefficients, as terms of 3. This encoding is
based on the numerical system of Section 8. It will serve to represent and
simulate all PolyTime Turing machines using the terms of ILAL.

We use pϑx to range over the polynomials
∑ϑ

i=0 aixi ∈ P with maximal nonnull
degree ϑ , and indeterminate x.

The result of this section is:

THEOREM 9.1. There is a translation ˆ : P → 3, such that, for any pϑx ∈ P :

—p̂ϑx : Int( §ϑ+3Int, and
—pϑn = m, if, and only if, p̂ϑn̄ ;∗§ϑ+3m̄.

In the following, we develop the proof of the theorem, and an example about
how the encoding works.

First of all, some useful notations.
Let pϑx be the polynomial

∑ϑ
i=0 aixi describing the computational bound of

the Turing machine being encoded. Let κ = ϑ(ϑ+1)
2 .

Abbreviate with Eyn an n-long vector of all vectors with length 1 through n,
each containing variables y j

i ∈ Tvariables, where 0 ≤ i ≤ n− 1, and 1 ≤ j ≤ n.
Figure 40 gives Ey3 as an example. As usual, Ey3[i][ j ] picks y j

i out of the vector Ey .
Figure 41, where p, q≥ 0, and n≥ 1, introduces both a type abbreviation, and

some generalizations of the operations on Church numerals in Section 8.
Figure 42 encodes the polynomial pϑx , on which we can note some simple facts.

tuplen makes n copies of the numeral it is applied to. Every “macro” 〈〈ai · xi〉〉 Eyϑ [i]
represents the factor aixi so that xi is a product of as many variables of Tvariables
as the degree i. The coercion applied to each of them just adds as many §-boxes
as necessary to have all the arguments of sumϑ+2

ϑ+1 at the same depth ϑ + 2.
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Fig. 41. Generalizations of operations on the numerals.

Fig. 42. Encoding of the polynomial.

We conclude this section with an example. Figure 43 fully develops the en-
coding of the polynomial x2+1. Assume we want to evaluate p̂2

2̄
, from which we

expect §55̄. Figure 44 gives the main intermediate steps to get to such a result.

10. EXPRESSIVE POWER OF ILAL

We are now in the position to show the expressive power of ILAL by en-
coding PolyTime Turing machines in 3. We shall establish some notations
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Fig. 43. Encoding the polynomial x2 + 1.

Fig. 44. Intermediate evaluation steps of p̂2
2̄
.

together with some simplifying, but not restricting, assumptions on the class
of PolyTime Turing machines we want to encode.

Every machine we are interested in is a tuple 〈S,6 ∪ {?,⊥,>}, δ, s0, sa〉,
where:

—S is the set of states with cardinality |S|,
—6 is the input alphabet,
—?,⊥,> 6∈ 6 are “blank” symbols,
—6 ∪ {?,⊥,>} is the tape alphabet,
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—δ is the transition function,
—s0 is the starting state, and
—sa is the accepting state.

In general, we shall use s to range over S.
The transition function has type δ: (6 ∪ {?,⊥,>})×S → (6 ∪ {?,⊥,>})×S ×

{L, R}, where {L, R} is the set of directions the head can move.
Both ⊥ and > are special “blank” symbols. They delimit the leftmost and the

rightmost tape edge. This means that we only consider machines with a finite
tape that, however, can be extended at will. For example, suppose the head
of the machine is reading >, that is, the rightmost limit of the tape. Assume
also the head needs to move rightward, and that, before moving, it needs to
write the symbol 1 on the tape. Since the head is on the edge of the tape, the
control of the machine firstly writes 1 for >, then adds a new > to the right of
1, and, finally, it shifts the head one place to its right, so placing the head on
the just added >. The same can happen to ⊥ when the head is on the leftmost
edge of the tape.

Obviously, the machines whose finite tape can be extended at will are per-
fectly equivalent to those that, by assumption, have infinite tape. These latter
have a control that does not require to recognize the borders of the tape, in
order to extend it, when necessary.

Taking only machines with finite tape greatly simplifies our encoding, be-
cause 3 contains only finite terms.

Recall now that we want to encode PolyTime Turing machines. For this rea-
son, we require that every machine come with a polynomial pϑx , with maximal
nonnull degree ϑ . The polynomial characterizes the maximal running time. So,
every PolyTime machine accepts an input of length l if, after at most pϑl steps,
it enters state sa. Otherwise, it rejects the input.

Without loss of generality, we add some further simplifying assumptions.
First, whenever the machine is ready to accept the input, before entering sa, it
shifts its head to the leftmost tape character, different from ⊥. We agree that
the output is the portion of tape from ⊥, excluded, through the first occurrence
of ? to its right. (Of course, for any PolyTime Turing machine, there is one
behaving like this with a polynomial overhead.) Second, we limit ourselves to
PolyTime Turing machines with 6 = {0, 1}.

Definition 10.1. T ϑPolyTime is the set of all PTime Turing machines, de-
scribed here above.

The next sections introduce the parts of the encoding of a generic PolyTime
Turing machine, using an instance of 3, built from the set of variable names
Tvariables={0, 1, ?,⊥,>}. Namely, we use the symbols of the tape alphabet di-
rectly as variable names for the term of the encoding. We hope this choice
will produce a clearer encoding. We shall try to give as much intuition as
possible as the development of the encoding proceeds. However, some details
will become clear only at the end, when all the components will be assembled
together.
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10.1 States

Recall that the set of states S has cardinality |S|. Assume to enumerate S. The
ith state is:

statei = λx0 ⊗· · ·⊗ x|S|−1 ⊗ v.xi v with 0 ≤ i ≤ |S| − 1,

which has type:

state = ∀αβ.(
|S| times︷ ︸︸ ︷

(α( β)⊗· · ·⊗(α( β) ⊗α)( β.

Every statei extracts a row from an array that, as we shall see, encodes the
translation δ̂ of δ. So, every xi stands for the ith row of δ̂ which must be a
closed term. The parameter v stands for the variables that the rows of δ̂ would
share in case they were not closed terms. The point here is that the sharing is
additive and not exponential. We can understand the difference by assuming
to apply statei on a δ̂ with two rows R1 and R2. Once all the encoding will be
complete, we shall see that, as the computation proceeds, for every instance of
δ̂ that the computation generates, only one between R1, R2 is used. The other
gets discarded. This has some interesting consequences on the form of δ̂ itself, if
R1, R2 share some variables. Indeed, assume x1, . . . , xn be all the free variables,
with linear types, common to R1, R2. Then R1 ⊗ R2 can not be typed as it is:
every x j would require an exponential type, contrasting with the effective use
of every x j we are going to do: since we assume to use either R1, or R2, every
x j is eventually used linearly. For this reason, our instance of δ̂ is represented
as the triple:

(λx1 ⊗· · ·⊗ xn.R1)⊗ (λx1 ⊗· · ·⊗ xn.R2)⊗ (x1 ⊗· · ·⊗ xn).

The leftmost component is extracted by means of state0 that applies λx1 ⊗· · ·⊗
xn.R1 to x1 ⊗· · ·⊗ xn. The rightmost component is obtained analogously, by
applying state1 to λx1⊗· · ·⊗ xn.R2 to x1⊗· · ·⊗ xn. Giving linear types to the free
variables of the rows in δ̂ allows their efficient, in fact linear, use.

10.2 Configurations

Each of them stands for the position of the head on an instance of tape, in
some state. We choose the following term scheme to encode the configurations
of PolyTime Turing machines:

config = λ01 ?⊥>.
§(λxx ′.(!χ1(· · · (!χp(!⊥ x)) · · · ))⊗ (!χ ′1(· · · (!χ ′q(!> x ′)) · · · ))⊗ statei),

where χ1≤i≤p, χ ′1≤ j≤q ∈ {0, 1, ?}, with p, q ≥ 0. Every config has type:

config = ∀α.!(α( α)(!(α( α)(
!(α( α)(!(α( α)(

!(α( α)( §(α( α( (α ⊗ α ⊗ state)).

As an example, take the following tape:

⊥ ? 1>. (4)
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Fig. 45. Projections representing the tape alphabet symbols.

Assume that the head is reading ⊥, and that the actual state is si. Its encoding
is:

λ01 ?⊥>.§(λxx ′.x ⊗ (!⊥(! ? (!1(!> x ′))))⊗ statei). (5)

The leftmost component of the tensor in the body of the λ-abstraction is the part
of the tape to the left of the head, also called left tape. It is encoded in reversed
order. The cell read by the head, and the part of the tape to its right, the right
tape, is the central component of the tensor.

Any starting configuration has form:

λ01 ?⊥>.§(λxx ′.(!⊥ x)⊗ (!χ1(. . . (!χq(!> x ′)) . . . ))⊗ state0),

where every χ j ranges over {0, 1}, and state0 encodes s0. Namely, the tape has
only characters of the input alphabet on it, the head is on its leftmost input
symbol, the left part of the tape is empty, and the only reasonable state is the
initial one.

10.3 Transition Function

The transition function δ is represented by the term δ̂, which is (almost) the
obvious encoding of an array in a functional language. So, δ̂ is (essentially) a
tuple of tuples. Every term representing a state can project a row out of δ̂. We
have already seen the encoding of the states in Section 10.1. Since then, we
know that every statei needs as argument the set of variables additively shared
by the components of the array it is applied to. So, δ̂ contains these variables
as (|S| + 1)th row. A column of a row is extracted thanks to the projections in
Figure 45. The name of each projection obviously recalls the tape symbol to
which it is associated. Every projection has type:

projα,β = ((α( β)⊗ (α( β)⊗ (α( β)⊗ (α( β)
⊗ (α( β)⊗ (α( β)⊗α)( β.

The transition function is in Figure 46. For example, we can extract the
element Qi,? from δ̂, by evaluating:

5? (statei (δ̂ (0⊗ 1⊗ ?⊗⊥⊗>))).

Finally, the terms Qi, j , as expected, produce a triple in the codomain of the
translation δ̂ of δ. Figure 47 defines 15 terms to encode the triples we need. The
triples are somewhat hidden in the structure of these terms. However, such
terms have the most natural form we found, once we choose to manipulate the
configurations of Section 10.2.
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Fig. 46. Encoding the transition function δ.

Fig. 47. The output triples of δ̂.
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Fig. 48. Typing for δ̂.

The first three “left” terms move the head from the top hl of the left tape
to the top of the right tape. This move comes after the head writes one of the
symbols among {0, 1, ?} on the tape. For example, if the written symbol is ?, the
new right tape becomes hl (? tr ). We recall that ? (or 0, or 1) replaces the symbol
read before the move. However, if the character on top of the right tape, before
the move, was ⊥, one of the last three “left” terms must be used, instead. They
put under the head the symbol that signals the end of the tape.

The “shifting to the right” behaves almost, but not perfectly, symmetrically.
The main motivation is that the head is assumed to read the top of the right
tape. So, when it shifts to the right, only the new character that the head writes
has to be placed on the left tape. If the head was reading > before the move,
another > must be added after it. This is done by the last three “right” shifts.
The last three terms are used in two ways. When the actual state of the encoded
machine is sa, the head cannot move anymore. This is exactly the effect of every
“stay” term. For example, stay1

i j must be used when we have to simulate a head
reading 1 in the actual state sa: the head must rewrite 1 without shifting. The
“stay” are also used as dummy terms in the “∅-column” of δ̂. The elements of that
column will never be used because they correspond to the move directions when
the head is beyond the tape delimiters ⊥ and >. But this can never happen.

Of course, the choice of which term in Figure 47 we have to use as Qi, j in δ̂
must be coherent with the behavior of δ that we want to simulate. We shall see
an explicit example about this later.

Figure 48 gives useful hints to those who want to check the well typing of δ̂.
It may help also saying that, once the whole encoding will be set up, the pro-
jections 50,51,5?,5⊥,5>, and 5∅ will be used in δ̂ with the type instantiated
as proj⊗α ,τα .

10.4 The Qualitative Part

We shall use the definitions in Figure 49, which also recalls some of the already
introduced abbreviations. Observe that !P⊗ is not a term that represents a
derivation of ILAL. However, it is perfectly sensible to associate it the logical
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Fig. 49. Some useful definitions and abbreviations.

Fig. 50. Terms producing a configuration from another configuration.

formula that we denote by !⊗α. In particular, !P⊗ contributes to build a well-
formed term, once inserted in a suitable context.

The key terms to encode a PolyTime Turing machine are in Figure 50.
config2config takes a configuration c and yields a new one. Step by step, let us see
the evaluation of config2config applied to the configuration (5). Substituting (5)
for c, the evaluation of the whole sub-term in the scope of the §̄ operator yields:

(5∅ ⊗ I⊗x)⊗ (5⊥ ⊗ !⊥⊗ (! ? (!1(!> x ′))))⊗ statei. (6)

Observe that (6) is obtained because (5) iterates every step from base in order
to extract what we call head pairs from the tape. In this example, the two head
pairs are 5∅ ⊗ I , and 5⊥ ⊗ !⊥. The head pairs always have the same form: 50
will always be associated to !0,51 to !1,5? to !?,5⊥ to !⊥,5> to !>, and5∅ to I .

Each of 50,51, . . . , together with statei, extracts an element in a row of δ̂.
This happens in next config. In its body, the actual state s extracts a row from
δ̂, and the tape symbol hl

r , read by the head, picks a move out of the row. In our
running example, s is statei, and hl

r is 5⊥. So, if δ(si,⊥) = (s j , 1, L), then Qi,⊥,
producing (s j , 1, L), must be left1

⊥i j . The next computational steps are, internal
to nextconfig are:

5⊥ (statei (δ̂ !P⊗)) I x (! ? (!1(!> x ′)))
;∗ left1

⊥i j !P⊗ I x (! ? (!1(!> x ′)))

;∗ (λhl tl tr .tl ⊗ (!⊥(!1 tr ))⊗ state j ) I x (! ? (!1(!> x ′)))

;∗ x ⊗ (!⊥ (!1(! ? (!1(!> x ′)))))⊗ state j
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Fig. 51. Typing for config2config.

So, under the hypothesis of simulating δ(si,⊥) = (s j , 1, L), the term, config,
rewrites

λ01 ?⊥>.§(λxx ′.x ⊗ (!⊥(! ? (!1(!> x ′))))⊗ statei) (7)

into:

λ01 ?⊥>.§(λxx ′.x ⊗ (!⊥(!1(! ? (!1(!> x ′)))))⊗ state j ) (8)

by means of config2config. For those who want to check that config2config is
iterable, that is, that config2config : config ( config, Figure 51 gives some
useful hints on the typing.

10.5 The Whole Encoding

We are, finally, in the position to complete our encoding of the machines in
T ϑPolyTime, with a given ϑ , as derivations of ILAL.

Up to now, we have built the two main parts of the encoding. We call
them qualitative and quantitative. The encoding δ̂ of the transition function,
and the iterable term config2config, which maps configurations to configu-
rations, belong to the first part. The encoding of the polynomials falls into
the latter.

The whole encoding exploits the quantitative part to iterate the qualita-
tive one, starting from the initial configuration. This is a suitable extension of
the actual input. Every actual input of the encoding is a list, standing for a tape
with the symbols {0, 1} on it. The iteration is as much long as the value of the
encoding of the polynomial, applied to the (unary representation) of the length
of the actual input.

THEOREM 10.2. There is a translation ˆ : T ϑPolyTime → 3 such that, for any

T ∈ T ϑPolyTime, and any input stream x for T , if T x evaluates to y , then T̂ x̂;∗ ŷ .

In particular, T̂ : tape( §ϑ+6tape, where:

tape = ∀α.!(α( α)(!(α( α)( §(α( α).

The rest of this section develops the details about ˆ : T ϑPolyTime → 3.
Figure 52 introduces the general scheme to encode any input for T as a term.
Figure 53 shows the encoding T̂ of T ∈ T ϑPolyTime which glues the quantitative

and the qualitative parts together.
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Fig. 52. Encoding the input tapes.

Fig. 53. Encoding a PolyTime Turing machine in T ϑPolyTime.

Fig. 54. Doubling the contents of the actual input tape.

Fig. 55. Reading back a tape from a configuration.

Figures 54, 55, 56, 57, and 58 introduce the terms dbl tape, config2tape,
tape2init config, tape2int, and the generalization iter p of iter , with 1 ≤ p, used
by T̂ .

The term, dbl tape, applied to a tape, doubles it. This is possible only by
accepting that the result gets embedded into a §-box. For example:

dbl tape (λ01.§(λx.!1(!0 x)))
;∗ §((λ01.§(λx.!1(!0 x))) ⊗ (λ01.§(λx.!1(!0 x)))).

The term, config2tape, is used to erase the garbage, left by T̂ on its tape,
to produce the result. Recall, indeed, that we made some assumptions on the
behavior of the elements of T ϑPolyTime when entering sa. The hypothesis was that
the machines we encode enter sa after their heads read the leftmost element of
the tape, different from⊥. A further assumption is that the result is the portion
of tape falling between the head position and the first occurrence of ? to its
right, once the machine is in state sa. The term, config2tape, eliminates all the
components of the encoding of a tape that is p §-boxes deep, but those between
⊥ and the leftmost occurrence of ?. For example, if T̂ reaches the configuration:

C = §p(λ01 ?⊥>.§(λxx ′.!⊥ x ⊗ !1(! ? (!0(!>x ′))) ⊗ statea)),
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Fig. 56. The initial configuration out of the actual input tape.

Fig. 57. transforming the actual input tape in to an integer.

Fig. 58. Generalizing the iteration.

then config2tape p C;∗§p+1(λ01.§(λx. §̄1 x)), that is, the result of the simulated
machine is simply the tape with the single alphabet element 1, and embedded
into p+ 1 §-boxes.

The term, tape2config, goes in the opposite direction than config2tape. Given
the encoding of a tape t, tape2config t gives the initial configuration of the
encoded machine, embedded into one §-box. For example:

tape2config (λ01.§(λx.!1(!0 x)))
;∗ §(λ01 ?⊥>.§(λxx ′.!⊥ x ⊗ !1(!0(!> x)) ⊗ state0)).

The term, tape2int, applied to a tape, produces the numeral, which expresses
the unary length of the tape itself. For example:

tape2int (λ01.§(λx.!1(!0 x))) ;∗ λy .§(λx.! y(! y x)).

The term, iter p, is the obvious generalization of iter to a first argument with
type Intp.

As a summary, we rephrase the intuitive explanation we gave at the be-
ginning of this subsection, to describe the behavior of the encoding. iterϑ+3

iterates p̂ϑx (tape2int t1) times the term !config2config, starting from the initial

ACM Transactions on Computational Logic, Vol. 3, No. 1, January 2002.



174 • A. Asperti and L. Roversi

Fig. 59. Obvious encoding of the configurations.

configuration given by tape2config t2. The variables t1, t2 stand for the two copies
of the input tape, produced by dbl tape t, where t represents the input tape it-
self. Finally, config2tapeϑ+6 reads back the result.

11. CONCLUSIONS

Light Linear Logic [Girard 1998] is the first logical system with cut elimination,
whose formulas can be used as program annotations to improve the evaluation
efficiency of the reduction. In the remark concluding Section 8.1, we observed
that the relation between the strategy to get such an efficiency and the more
traditional strategies is not completely clear; we left an open problem.

By drastically simplifying Light Linear Logic sequent calculus, Intuitionistic
Light Affine Logic helps to understand the main crucial issues of Girard’s tech-
nique to control the computational complexity. Roughly, it can be summarized
in the motto: stress and take advantage of linearity whenever possible. Techni-
cally, the simplification allows to see § as a weak version of dereliction in Linear
Logic [Girard 1995]. It opens !-boxes while preserving the information on lev-
els. Moreover, the proof about the expressive power of ILAL is not immediately
trivial. In particular, some reader may have noticed that the configurations of
the machines are not encoded obviously, like in Girard [1998], as recalled in
Figure 59. Roversi [1999] discusses about why such an encoding can not work.
Roughly, it does not allow to write an iterable function config2config, which is
basic to produce the whole encoding.

The idea to consider full weakening in Light Linear Logic, to get Light
Affine Logic, was suggested by the fact that in Optimal Reduction [Asperti
and Guerrini 1998] we may freely erase any term. For the experts, the garbage
nodes do not get any index.

Some attempts to extract a programming language with automatic polymor-
phic type inference, from ILAL are in Roversi [1998; 2000]. However, they must
be improved in terms of expressive power and readability.
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