Network Science: Erdős-Rényi Model for Network Formation

Ozalp Babaoglu
Dipartimento di Informatica — Scienza e Ingegneria
Università di Bologna
www.cs.unibo.it/babaoglu/

Why model?

- Simpler representation of possibly very complex structures
- Can gain insight into how networks form and how they grow
- May allow mathematical derivation of certain properties
- Can serve to “explain” certain properties observed in real networks
- Can predict new properties or outcomes for networks that do not even exist
- Can serve as benchmarks for evaluating real networks

Modeling approaches

- Random models — choices independent of current network structure
 - Erdős-Rényi (ER)
 - Watts-Strogatz (clustered)
- Strategic models — choices depend on current network structure
 - Barabási-Albert (preferential attachment)
- Limited knowledge models — choices based on local information only
 - Newscast
 - Cyclone

Erdős-Rényi model

- Network is undirected
- Start with all isolated nodes (no edges) and add edges between pairs of nodes one at a time randomly
- Perhaps the simplest (dumbest) possible model
- Very unlikely that real networks actually form like this (certainly not social networks)
- Yet, can predict a surprising number of interesting properties
- Two possible choices for adding edges randomly:
 - Randomize edge presence or absence
 - Randomize node pairs
Erdős-Rényi model
Randomize edge presence/absence

- Two parameters
 - Number of nodes: \(n \)
 - Probability that an edge is present: \(p \)
- For each of the \(n(n-1)/2 \) possible edges in the network, flip a (biased) coin that comes up “heads” with probability \(p \)
 - If coin flip is “heads”, then add the edge to the network
 - If coin flip is “tails”, then don’t add the edge to the network
- Also known as the "\(G(n, p) \) model" (graph on \(n \) nodes with probability \(p \))

Example: \(n=5, p=0.6 \)

- Number of possible edges: \(n(n-1)/2=5\times4/2=10 \)
- Ten flips of a coin that comes up heads 60%, tails 40%
 - Add the edges corresponding to the “heads” outcomes

Average node degree: \(p(n-1) \)
What about node degree distribution?

Expected average node degree: \(p(n-1)=0.6\times4=2.4 \)
Actual average node degree: \((3+3+2+2+0)/5=2.0 \)
Distribution
Erdős-Rényi model
Degree distribution

- Need to quantify the probability that a node has degree k for all $0 \leq k \leq (n-1)$
- A node has degree zero if all coin flips are “tails”
- A node has degree $(n-1)$ if all coin flips are “heads”
- For a node to have degree k, the $(n-1)$ coin flips must have resulted in k “heads” and $(n-1-k)$ “tails”
- Since the probability of a “heads” is p, the probability of a “tails” is $(1-p)$

- The outcome “k “heads” and $(n-1-k)$ “tails”” occurs with probability $p^k (1-p)^{n-1-k}$
- But there are “$(n-1)$ choose k” ways in which this outcome can occur (the order of the flip results does not matter)
- Thus, the probability that a given node has degree k is given by the Binomial distribution
 \[
 \binom{n-1}{k} p^k (1-p)^{n-1-k}
 \]

Erdős-Rényi model
Binomial distribution

- Mean of the binomial distribution is $\mu = p(n-1)$ (which is also the average node degree we saw earlier)

- For p small
- For n large

Erdős-Rényi model
Binomial distribution—approximations

- Mean of the binomial distribution is $\mu = p(n-1)$ (which is also the average node degree we saw earlier)

- For p small
- For n large
Random network with $n=50, p=0.08$

Degree distribution of random network with $n=50, p=0.08$

Alternative method for adding edges randomly

- Two parameters
 - Number of nodes: n
 - Number of edges: m
- Pick a pair of nodes at random among the n nodes and add an edge between them if not already present
- Repeat until exactly m edges have been added
- Also known as the “$G(n, m)$ model” (graph on n nodes with m edges)
- For large n, the two versions of ER are equivalent
Erdős-Rényi model

Randomize node pairs

- Example: $n=5, m=4$

- The two versions of the model are related through the equation for the number of edges: $m=pn(n-1)/2$
- In the first case we pick p, and m is established by the model
- In the second case we pick m, and p is established by the model
- The above example corresponds to the second case where $p=2m/n(n-1)=2\times4/(5\times4)=0.4$

Erdős-Rényi model vs real networks

Degree distribution

- The ER model is a poor predictor of degree distribution compared to real networks
- The model results in Poisson degree distributions that have exponential decay
- Whereas most real networks exhibit power-law degree distributions that decay much slower than exponential

Erdős-Rényi diameter

- Recall that the diameter of a network is the longest shortest path between pairs of nodes
- Equivalently, the average distance between two randomly selected nodes
- In a connected network with n nodes, the diameter is in the range 1 (completely connected) to $n-1$ (linear chain)
- For a given n as we vary the model parameter p from 0 to 1, at some critical value of p, the diameter becomes finite (network becomes connected) and continues to decrease, becoming 1 when $p=1$
- What is the relation between the diameter and p in the region where the network is connected?

Erdős-Rényi diameter

- Suppose the model results in a tree-structured network of nodes with identical degrees, all equal to the average $z=p(n-1)$
- Starting from a given node, how many nodes can we reach in ℓ steps?

At step 1, reach z nodes
then, reach $z(z-1)$ new nodes
then, reach $z(z-1)^2$ new nodes
...the number of new nodes reached grows exponentially with steps
Erdős-Rényi diameter

- After \(\ell \) steps, we have reached a total of
 \[
z + z(z - 1) + z(z - 1)^2 + \ldots + z(z - 1)^{\ell-1}
 \]
- nodes, which is
 \[
z((z - 1)^{\ell} - 1) / (z - 2)
 \]
- which is roughly \((z - 1)^{\ell}\)
- How many steps to reach \((n - 1)\) nodes?
 \[
 (z - 1)^{\ell} = (n - 1)
 \]
- Roughly, \(\ell \) has to be on the order of \(\log(n)/\log(z) \)

Erdős-Rényi model vs real networks

Diameter

- The ER model is a good predictor of diameter and average path length compared to real networks
- The model results in networks with small diameters, capturing very well the “small-world” property observed in many real networks

Erdős-Rényi clustering coefficient

- Recall clustering coefficient of a node: probability that two randomly selected friends of it are friends themselves
- In the ER model, an edge between any two nodes is present with probability \(p \) (independent of their context)
- So, the clustering coefficient of the ER random network is equal to \(p \)
Erdős-Rényi clustering coefficient

- Example: $n=5$, $p=0.6$

 ![Diagram of a network with clustering coefficient calculation]

 - $CC = (0+1+1+2/3+2/3)/5 = 0.6667$
 - Compare with p which is 0.6

Erdős-Rényi giant component

- Suppose we add edges randomly with probability p
- If $p=0$, no edges added, so edge density of the network is 0
- As p tends towards 1, the edge density tends towards 1
- In fact, for the ER model, edge density follows the edge probability exactly
- What structural properties are likely at a given density ρ?
- When do certain structures emerge as a function of ρ?
 - Many interesting properties occur at small densities
 - And they occur very suddenly (tipping points)

Erdős-Rényi model vs real networks

- Clustering coefficient
 - The ER model is a poor predictor of clustering compared to real networks
 - The model results in clustering coefficients that are too small and too close to the edge density
 - Whereas most real networks are often highly clustered with clustering coefficients that are much greater (sometimes several orders of magnitude) than their edge densities

Recall edge density of a network: actual number of edges in proportion to the maximum possible number of edges

- In the ER model, on average, $pn(n-1)/2$ edges are added, thus $m=pn(n-1)/2$
- Edge density of ER network:
 \[\rho = \frac{2m}{n(n-1)} = \frac{2(pn(n-1)/2)}{n(n-1)} = p \]
- Since the edge density is exactly equal to the background probability of triangles being closed, the networks produced by the ER model cannot be considered highly clustered
Note that at edge density ρ, the expected node degree is $\rho(n-1) \sim \rho n$ for large n.

Run the NetLogo Library/Networks/GiantComponent simulation.

In the ER model, giant components start forming at very low values of edge density.

For large n, we can show that:
- If $\rho < 1/n$, the probability of a giant component tends to 0.
- If $\rho > 1/n$, the probability of a giant component tends to 1 and all other components have size at most $\log(n)$.

At the tipping point $\rho = 1/n$, the average node degree is $\rho n = 1$.

Network is very sparse but ER uses edges very efficiently.

How many potential edges are missing?
- The number of cross component edges is $\sim n/2 \times n/2 = n^2/4$.
- Compare to the total number of possible edges: $n(n-1)/2$.
- In other words, more than half of all possible edges are missing.
- Selecting a new edge to add that is not one of the missing “cross edges” becomes increasingly more unlikely.
- Imagine enrolling 10,000 friends to Facebook asking them to keep their friendships strictly among themselves.
- Impossible to maintain since all it takes is just one of the 10,000 to make one external friendship.

In those rare cases where two giant components have co-existed for a long time, their merger is sudden and often dramatic.

Imagine the arrival of the first Europeans in the Americas some 500 years ago.
- Until then, the global socio-economic-technological network likely consisted of two giant components — one for the Americas, another for Europe-Asia.
- In the two components, not only technology, but also human diseases developed independently.
- When they came in contact, the results were disastrous.
Erdős-Rényi diameter

Tipping point

- In the ER model, emergence of small diameter is also sudden and has a tipping point
- For large n, we can show that
 - If $\rho < n^{-5/6}$, the probability of the network having diameter 6 or less tends to 0
 - If $\rho > n^{-5/6}$, the probability of the network having diameter 6 or less tends to 1
- For the US, $n=300M$ and the tipping point is $\rho n \sim 25.8$
- For the world, $n=7B$ and the tipping point is $\rho n \sim 43.7$

Erdős-Rényi

Other tipping points

- In fact, we can prove a much more general result
- In the ER model, any monotone property of networks has a tipping point
- In networks, a property is monotone if it continues to hold as we add more edges to the network
- Examples:
 - The network has a giant component
 - The diameter of the network is at most k
 - The network contains a cycle of length at most k
 - The network contains at most k isolated nodes
 - The network contains at least k triangles

Erdős-Rényi

Summary

- The ER model is able explain
 - Small diameter, path lengths
 - Giant components
- The ER model is not able explain
 - Degree distributions
 - Clustering