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ABSTRACT
There is a growing interest in running legal contracts on blockchain

systems to exploit the advantages of such systems in terms of disin-

termediation, transparency and immutability. At the same time, it is

important to understand to what extent smart contracts programs

may capture legal content. To fulfil these needs, we undertake

a foundational study of legal contracts and we distill four main

features: agreement, permissions, violations and obligations. We

therefore design Stipula, a domain specific language that assists

lawyers in programming legal contracts through specific patterns.

The language is based on a small set of abstractions that express

the features of legal contracts and that are amenable to be executed

on blockchain systems. Stipula is equipped with a formal semantics

and an observational equivalence, that provide for a clear account

of the contracts’ behaviour, and allows us to sketch an implemen-

tation on top of the Ethereum platform, pinpointing the critical

differences between the two settings.
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currency; • Distributed computing models;
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1 INTRODUCTION
A legal contract is “an agreement which is intended to give rise

to a binding legal relationship or to have some other legal effect”

[23]. The parties are in principle free to determine the content

of their contracts (party autonomy/freedom of contract): the law

recognizes their intention to achieve the agreed outcomes and

secures the enforcement of such outcomes (legally binding effect).
A contract produces the intended effects, declared by the parties,

only if it is legally valid: the law may deny validity to certain
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clauses (e.g. excessive interests rate) and/or may establish additional

effects that were not stated by the parties (e.g. consumer’s power to

withdraw from an online sale, warranties, etc.). The intervention of

the law is particularly significant when the contractor (usually the

weaker party, such as the worker in an employment contract or the

consumer in an online purchase) agrees without having awareness

of all clauses in the contract, nor having the ability to negotiate

them, due to the existing unbalance of power.

Blockchain-based smart contracts have been advocated for digi-

tally encoding legal contracts, so that the execution and enforce-

ment of contractual conditions may occur automatically, without

human intervention. This technology enables cutting performance

costs and increasing outcomes certainty. Moreover, since the exe-

cution of smart contracts is trackable and irreversible, parties that

to not trust each other can use them with no intermediation of

a trusted third party. On this account, several governments have

recently recognised that smart contracts and, more general, pro-

grams operating over distributed ledgers may indeed have legal

value [2, 4, 6]. However, the assimilation of smart contracts to

legally binding contracts, or rather the double nature of smart con-

tracts as computational mechanisms and as legal contract raises

both legal and technological issues.

In this paper, after discussing the main issues raised by the liter-

ature, we propose a technology that may contribute to addressing

them. The overall aim is to facilitate the transparency of smart con-

tracts as well as the mapping of computational operations into legal-

institutional outcomes, thus limiting or mitigating the problems

concerning the implementation of smart contracts and preventing

disputes between the parties.

Specifically, we put forward Stipula, a new domain specific lan-

guage for the creation of smart legal contracts operating over a

blockchain. Stipula is pivoted on a small number of abstractions that

are useful to capture the distinctive elements of legal contracts, that

is permissions, prohibitions, obligations, fungible and non fungible

assets exchanges, risk (viz. alea), escrows and securities. All these nor-
mative elements are expressed by a strictly regimented behaviour in

legal contracts: permissions and empowerments correspond to the

possibility of performing an action at a certain stage, prohibitions

correspond to the interdiction of doing an action, while obligations

are recast into commitments that are checked at a specific time

limit. Moreover, the set of normative elements changes over time

according to the actions have been done (or not). To model these

changes, Stipula commits to a state-aware programming style, in-

spired by the state machine pattern widely used in smart contracts

(c.f. Solidity [1] and Obsidian [3]). This technique allows one to

enforce the intended behaviour by prohibiting, for instance, the

invocation of a function before another specific function is called.

A second distinctive feature of Stipula is the event primitive, a

programming abstraction that is used to issue an obligation and

1
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schedule a future statement that automatically executes a corre-

sponding penalty, if the obligation is not met. This allows one to

implement legal obligations and commitments in terms of the fu-

ture execution of a (state-aware) computation at a specific point in

time.

A third peculiarity of Stipula is the agreement operator, which
marks that the contract’s parties have reached a consensus on the

contractual arrangement they want to create. In legal contracts,

this phase corresponds to the subscription of the contract, where

there are parties that are going to set the contractual conditions and
others that accept them. Technically, the operation is a multiparty

synchronization, which is implemented in current smart contract

languages by ad-hoc protocols (see Section 6).

The fourth key feature regards assets, which are first-class linear

concepts in Stipula. In particular, Stipula has an explicit, and thus

conscious, management of linear resources, such as currency-like

values and tokens. The transfer of such resources must preserve

the total supply: the sender of the asset must always relinquish the

control of the transferred asset. These assets, which are pervasive

in the most successful blockchain applications and the induced

economy, are necessary in legal contracts, as well: currency is

required for payment but also for escrows, and tokens, both fungible

and non-fungible, are useful tomodel securities and provide a digital

handle on a physical good. The design choice of explicitly marking

asset movements with an ad hoc syntax in Stipula promotes a safer,

asset-aware, programming discipline that reduces the risk of the so-

called double spending, the accidental loss or the locked-in assets.

Therefore, without providing the flexibility/expressive power of

resource-aware languages like Move [11] or Nomos [10], Stipula
uses a simple and powerful core of primitives that support the

writing of digital legal contracts even by non ICT experts.

In Section 2 we give an interdisciplinary discussion about smart

legal contracts, focusing on the interlace between the on-chain

and off-chain elements required by the digitalization of juridical

acts. The syntax of Stipula is formally defined in Section 3 where a

simple example – the Bike-Rental contract – is used to describe the

concepts. The semantics of Stipula is defined in Section 4, sticking

to an operational approach that specifies the runtime behaviour of

a legal contracts by means of transitions. In Section 5, following

a standard technique in concurrency theory [19], we develop an

observational equivalence that provides for an equational theory

of smart legal contracts. The equivalence is based on a notion of

bisimulation that is suitable to blockchain-based observations, and

that equates contracts differing for hidden elements, such as names

of states, and singles out conditions for identifying contracts that

send two assets in different order. The study of the implementation

of the distinctive elements of Stipula, namely agreements, assets

and events, on a blockchain systems using a Solidity-like target
language is undertaken in Section 6. The specification in Stipula of
a set of archetypal acts, ranging from renting to (digital) licenses

and to bets, is reported in Section 7

We end our contribution by discussing the related work in Sec-

tion 8 and delivering our final remarks in Section 9. The appendix,

which has been added for reviewer sake, contains a technical part.

2 SMART LEGAL CONTRACTS
A substantial debate has taken place on whether the parties’ de-

cision to execute a smart contract having certain computational

effects may count as legal contract establishing corresponding legal

effect, e.g. [12, 16, 18, 20]. A simple answer to this question comes

from the principle of “freedom of form” in contracts, which is shared

by modern legal systems: parties are free to express their agreement
using the language and medium they prefer, including a programming
language. Therefore, by this principle, smart contracts may count

as legal contracts.

However, the problem is whether smart contracts preserve the

essential elements of legal ones. In this respect, a legal contract is

meant to bring about the institutional effects intended by the parties,
that is establishing new obligations, rights, powers and liabilities

between them or to transfer rights (such as rights to property) from

one party to the other. These institutional effects are guaranteed

by the possibility of activating judicial enforcements. That is, each

partymay start a lawsuit if he believes that the other party has failed

to comply with the contract. In this case, the judge will have to

interpret the contract, ascertain the facts of the case, and determine

whether there has indeed been a contractual violation. Accordingly,

the defaulting party may be enjoined to comply or pay damages.

Whether and to what extent we may consider that a smart contract

produces judicially enforceable legal effects is more debatable, given

that smart contract modify especially in absence of international

technical standards and transnational legal frameworks.

We recognise that no easy and comprehensive solution is yet at

hand for the issue we have just mentioned. However, we believe that

it can be at least mitigated if a strict, and understandable mapping

is established between executable instructions and institutional-

normative effects. To this aim, we observe that the lifecycle of a

legal contract goes through a number of phases: (a) formation and

negotiation, (b) contract storage/notarizing, (c) performance, en-

forcement and monitoring, (d) possible modification (e) dispute
resolution, and (f ) termination. Software-based solutions can be

valuable in all these phases, but the specific features of blockchain-

based smart contracts make them convenient only in some of them.

For example, the negotiation of contractual conditions might re-

quire a degree of privacy that conflicts with that of the blockchain,

which naturally runs on transnational infrastructures, thus crossing

several, possibly different, legal systems and jurisdictions (c.f. Gen-
eral Data Protection Regulation is valid only in Europe). Similarly

the dispute resolution can take advantage of online services, but

can hardly be fully ported on-chain. It is also very problematic to

amend the behaviour of a running smart contract to match a change

in the parties’ will.

On the other hand, the blockchain is perfectly suited to phases

(b) and (c). Both the content of the legal contract and the expression

of agreement of the parties can be notarized and code can be used

to express the contractual clauses and automatically enforce them

through the runtime execution, which is verified and recorded by

the nodes of the blockchain.

Nevertheless, if smart contracts are legally binding, then it is

necessary to ensure that the parties are fully aware of the computa-

tional effects of their code. Only in this case, there may be a genuine

agreement over the content of the contract. Thus transparency and

some degree of readability by contractors that have no or little
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computer expertise becomes a key requirement. Relating to this

point, we acknowledge that similar problems also exist in natural

language contracts, which are usually signed without the parties

being aware of all of their clauses and judicial enforcement being

too costly or complex to be practicable. Usually, when concluding

online purchases of goods or services, most consumers just click

the “accept” button, without even trying to read the clauses (which

are often lengthy and full of legal jargon).

We believe that Stipula provides some important advantages as

a language for specifying smart legal contracts. Its primitives are

concise and abstract enough to be easily accessible to lawyers. Its

formal operational semantics promises that the execution of con-

tracts does not lead to unexpected behaviours and is amenable to

automatic verification. To mention a distinctive feature of Stipula,
the agreement primitive helps to deal with some legal issues, since

it clearly identifies the moment when (some) legal effects are trig-

gered and the parties who are involved. For instance, the set of

parties involved in the agreement might include an Authority that

is charged to monitor off-chain constraints, such as obligations of

diligent storage and care, or the obligations of using goods only as

intended, taking care of litigations and dispute resolution. Moreover,

untrusted players involved in a bet contract can rely on the agree-

ment to explicitly define the data source providing the outcome of

the aleatory value associated to the bet.

3 THE STIPULA LANGUAGE
Stipula features a minimal set of primitives that are primary in legal

contracts, such as agreements, field updates, conditional behaviour,

timed events, value and asset transfer, functions and states like

Finite State Machines (FSMs).

We use countable sets of: contract names, ranged over by C, C1
,

¨ ¨ ¨ ; names of externally owned accounts, called parties, ranged over
by A, A1

, ¨ ¨ ¨ ; function names ranged over f, g, ¨ ¨ ¨ . Parties repre-

sent the users involved in the contract, i.e. addresses in blockchain

systems. Assets and generic contract’s fields are syntactically set

apart since they have different semantics. Then we assume a count-

able set of asset names, ranged over by h, h1
, ¨ ¨ ¨ , and a set of field

names, ranged over x, x1
, ¨ ¨ ¨ . We reserve z, z1

, y, y1
, for function

parameters and A, A1, ¨ ¨ ¨ for parameters that are parties. Finally,

we will use Q, Q1
, ¨ ¨ ¨ , to range over contract states. A smart legal

contract in Stipula is written

legal_contract C {

assets h1,. . .,hk
fields x1,. . .,xk 1

agreement(A1,. . .,An ){

Ai =SET=> xi1 ,. . .,xiri {{ i P I
Aj =OK=> x j1 ,. . .,x jsj {{ j P J

} ñ @Q

F

}

where C identifies the contract; its body contains assets and fields

(without any typed information: Stipula is type-free), the agreement
code, where I and J are subsets of 1..n, and F is a sequence of

functions.

The dichotomy between assets and fields is a key design choice

of Stipula. Indeed, the relevance of first-class resources, i.e. linear

values that cannot be copied nor dismissed, is widely acknowledged

in DLTs (c.f. Move [11] and Nomos [10]) to support a safer asset-

aware contract programming. Legal contracts as well manage assets,

such as money and tokens granting a digital access to (possibly

physical) goods or services. Henceforth the decision to syntactically

highlight the differences between operations on values and on

assets.

The definition of who is going to participate to the contract and

what are the terms of the contract in an explicit abstraction – the

agreement – is another distinctive feature of Stipula. Technically,
the agreement is the constructor of the contract, that specifies which
parties may set the values for fields – operation =SET=> – and which
ones may agree on such values – operation =OK=>. It also specifies

the initial state of the contract. We assume a consistency criterium

for these operations: (i) a field may be set by at most one party,

(ii) parties may agree on fields set by others, and (iii) every party

involved in the agreement must either set or agree on a possible

empty sequence of fields, e.g. A =OK=>∅. Observe that no asset can

be set during the agreement, only fields. It is assumed that fields,

assets and parties’ names do not contain duplicates.

Functions F and their bodies are written according to the syntax

in Table 1. The function’s syntax highlights the constraint that

only the party A can invoke the function f, and only when the con-

tract is in state Q. Function’s parameters are split in two lists: the

formal parameters z1,. . .,zm in brackets and the asset parameters
y1,. . .,ym1 in square brackets. The precondition (B) is a predicate
on parameters of the functions and fields and assets of the con-

tract that constrains the execution of the body of f. Finally the

body {S W}ñ @Q1
specifies the statement part S, the event part W,

and the state Q1
of the contract when the function execution termi-

nates. Function’s parameters are assumed without duplicates, and

empty lists of (asset) parameters are shortened by omitting empty

parenthesis.

Statements S include the empty statement -- and different types of
assignments, followed by a continuation. Assignments use the two

symbols⊸ and Ñ to differentiate updates of assets and of fields,

respectively. The syntax of the two operators is taken from [10].

Assignments can be either local, that is referring to local fields

or local assets, denoted by E Ñ x and E ⊸ h,h1
, respectively, or

they can be remote, denoted by E Ñ A and E ⊸ h,A, defining the
sending of a value and an asset, respectively, to the address A. Asset
assignments are ternary operations: the meaning of E ⊸ h,h1

is

that the value of E is subtracted to the asset h and added to the asset
h1

– resources stored in assets can be moved but cannot be destroyed.
The operational semantics will ensure that asset assignments can

at most drain an asset, preventing assets with negative values. In

the rest of the paper we will always abbreviate assignments such

as h ⊸ h,h1
and h ⊸ h,A1

(which are very usual, indeed) into

h ⊸ h1
and h ⊸ A1

, respectively. Statements also include condi-
tionals (B){ S } S1

that executes S if the predicate B is true and

continues as S1
.

Events W are sequences of timed continuations. A timed contin-

uation is a term E " @Q {S}ñ @Q1
, which is triggered at a time t

that is the value of E. When triggered, the continuation S will be
executed only if the contract’s state is Q. At the end of the execution
of S, the contract transits to Q1

. That is, in Stipula, the programming

abstractions of FSMs are used to schedule the future execution of

3
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F ::“ _ | @Q A : f(z1,. . .,zm )[y1,. . .,ym1 ] (B){ S W } ñ @Q1 F

S ::“ _ | E Ñ x S | E ⊸ h,h1 S | E Ñ A S | E ⊸ h,A S | (B){ S } S

W ::“ _ | E " @Q { S } ñ @Q1 W

E ::“ now | X | v | E op E

B ::“ true | false | E rop E | B NN B | B || B | ~B

Table 1: Syntax of Stipula.

a (state-aware) computation at a specific point in time. We will

show that this notion of events is pivotal in the encoding of legal

obligations and commitments.

Expressions E can be names of assets, fields and parameters, gener-

ically ranged over by X. The names v and u will be reserved for

values; they include integer and boolean constants, asset constants

like (non-fungible) tokens, strings, and a time datatype. We will be

a little liberal with values and operations, generically denoted by E
op E: they include standard arithmetic operations and operations

on tokens, e.g. use_once(token) generates a usage-code providing
a single access to the service or the good associated to the token
asset. The operation t + n sums n seconds to the time value t. The
identifier now stores the present time (when the code is executed).

Boolean expressions B are the standard ones, where the operations

rop are the relational operations (==, >=, etc.) The set of names

occurring in E will be noted by fvpEq.

A Stipula program P is a sequence of smart legal contracts defi-

nitions. The contracts are inactive as long as no group of addresses

has interest to run them, by invoking the agreement code. We re-

mark that in Stipula the code of a contract cannot invoke another
contract: we postpone to future work the study of language ex-

tensions allowing cross references between legal contracts using

inheritance and composition. Therefore, at the moment, since legal

contracts are independent, there is no loss of generality in consid-

ering a program to be composed by a single smart legal contract

definition.

Example 3.1. Consider the following simple contract for renting

bikes:

1 legal_contract Bike_Rental {

2 assets balance

3 fields cost , time_limit , use_code

4

5 agreement (Lender , Borrower) {

6 Lender =SET=> time_limit , cost

7 Borrower =OK=> time_limit , cost

8 } ñ @Inactive

9

10 @Inactive Lender : offer (z) {

11 z Ñ use_code

12 } ñ @Proposal

13

14 @Proposal Borrower : accept [y]

15 (y == cost) {

16 y ⊸ balance

17 use_code Ñ Borrower

18 now + time_limit "

19 @Using { //end -of -time usage

20 "End_Reached" Ñ Borrower

21 balance ⊸ Lender

22 } ñ @End

23 } ñ @Using

24

25 @Using Borrower : end {

26 balance ⊸ Lender

27 } ñ @End

28 }

Listing 1: The rent for free contract

The agreement code specifies that there are two parties – the

Lender and Borrower – and that the Lender sets the values for

the time of usage (time_limit) and the cost, while the Borrower
has to agree on such values. Then Lender sends a use-code that is

stored in the contract (in the use_code field) and is not accessible to
Borrower till he pays for the usage. The transition from Inactive
to Proposal at the end of the offer function enables the Borrower
to pay for the usage – function accept that takes in input an asset

– so that the contract sends him the use-code (line 17) and he can

use the bike till the time limit. This constraint is expressed by the

event in lines 18-22. We have two remarks: first, the payment is not

made to Lender but the asset is stored in the contract (in balance);
second, the event will be triggered when the time expires. In this

case a message to Borrower is sent, the payment is transferred to

Lender, which will change bike’s use code so that the bike will

be locked at the next Borrower’s stop. The function end can be

invoked by Borrower to terminate the renting before time expires.

The legal issues involved in a rent contract will be discussed in

Section 7.

4 SEMANTICS
The meaning of Stipula primitives is defined in an operational way

by means of a transition relation. Let CpΦ , ℓ , Σ , Ψq be a runtime
contract where

‚ C is the contract name;

‚ Φ is the current state of the contract: it is either -- (for no

state) or a contract state Q;
‚ ℓ is a mapping from fields and assets to values;

‚ Σ is a possible residual of a function body or of an event

handler, i.e. Σ is either -- or a term S W ñ @Q;
‚ Ψ is a (possibly empty) multiset of pending events that have
been already scheduled for future execution but not yet

triggered. We let Ψ be -- when there are no pending events,

otherwise Ψ “ W1 | . . . | Wn such that each Wi is a single

event expression (not a sequence), and its time guard is an

expression that has already been evaluated into a time value

ti .

Runtime contracts are ranged over by C, C1
, ¨ ¨ ¨ . A configuration,

ranged over by S, S1
, ¨ ¨ ¨ , is a pair C,t, where t is a global clock. As

anticipated, there is no loss of generality in considering programs

made of a single running contract; a remark about the extension to

4
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configurations containing several contracts is reported at the end

of the section.

The transition relation of a Stipula program P is S
µ

ÝÑP S1
,

where the label µ is either empty, or A : fpuqrvs, or v Ñ A, or
v ⊸ A, or α , where α “ A1 R1 rx1 ÞÑ v1s } ¨ ¨ ¨ } Ak Rk rxk ÞÑ vk s,

with R1, ¨ ¨ ¨ , Rk P tSET, OKu. In the following we will always omit

the index P because it is considered implicit. The formal definition

of S
µ

ÝÑ S1
is given in Tables 2 and 3, using the following auxiliary

predicates and functions:

‚ JEKℓ is a function that returns the value of E in the memory

ℓ. We omit the definition.

‚ JWKℓ is the multiset of scheduled events obtained from the

sequence W by replacing every time expression by its value

in the time guards. That is J--Kℓ “ -- and JE " @QtSu ñ

@Q1 W1Kℓ “ JEKℓ " @QtSu ñ @Q1 | JW1Kℓ .
‚ Let Ψ be a multiset of pending events, and t a time value,

then the predicate Ψ , t Û is true whenever Ψ “ t1 "

@Q
1
tS1u ñ @Q1

1
| ¨ ¨ ¨ | tn " @QntS1u ñ @Q1

n and, for every

1 ď i ď n, ti ‰ t, false otherwise.

Rule [Agree] in Table 2 establishes the agreement of the parties

involved in the contract. This operation is a multiparty synchroniza-

tion and the label α is intended to highlight this point. Some parties,

namely Ai with i P I , set the initial values of the contract’s fields
xi . At the same time the parties Aj , with j P J , agree on this field

initialisation – c.f. the last premise. The parties, represented in the

legal contract by the parameters A1, ¨ ¨ ¨ , An are instantiated by the

actual addresses A1, ¨ ¨ ¨ ,An . We recall the consistency criterium

stating that a field may be set by at most one party, the parties may

agree on fields that they do not set, and all the n parties appear in

the label α .
Rule [Function] defines function invocations; the label specifies

the address A performing the invocation and the function name f
with the actual parameters. The transition may occur provided (i)
the contract is the state Q that admits invocations of f from A and

(ii) the contract is idle, i.e. the contract has no statement to execute

– c.f. the left-hand side runtime contract – (iii) the precondition B is
satisfied, and no event can be triggered – c.f. the premise Ψ , t Û.

In particular, this last constraint expresses that events have prece-
dence on possible function invocations. For example, if a payment

deadline is reached and, at the same time, the payment arrives, it

will be refused in favour of the event managing the deadline.

Rule [State Change] says that a contract changes state when the

statements execution terminates and the sequence of events W is

added to the multiset of pending events, up to the evaluations of

their time expressions, i.e. the occurrences of the identifier now are

replaced by the current value of the clock.

Rule [Event Match] specifies that event handlers may run pro-

vided there is no statement to perform in the runtime contract, and

the time guard of the event has exactly the value of the global clock

t. Observe that the timeouts of the events are evaluated in an eager

way when the event is scheduled – c.f. rule [State Change] – not

when the event handler is triggered. Moreover, the state change

performed at the end of the execution of the event handler is carried

over again by the rule [State Change], with an empty sequence W.
Rule [Tick] models the elapsing of time. This happens when the

contract has no statement to perform and no event can be triggered.

Intuitively, the implementation of Stipula on top of a blockchain

will bind the global clock to the timestamp of the current block.

Therefore a sequence of semantic transitions performed in the same

unit of time will correspond to a set of transactions inserted into

the same block to be appended to the blockchain.

It is worth to notice that the foregoing rules imply that the

complete execution of a function call does not affect the global

time. This admits the paradoxical phenomenon that an endless

sequence of function invocations does not make time elapse. While

this is possible in theory, it is not in practice, since blocks can only

include a finite number of transactions. Additionally, all the legal

contracts we have analyzed are finite state, each state admits a single

function invocation, and function invocations update the state in

a noncircular way, thus preventing infinite sequence of function

calls. An alternative choice would be to adjust the semantics so to

increment the clock every time a maximal number of functions has

been evaluated, thus forcing each block to contain at most a limited

number of function invocations. We have preferred to stick to the

simpler semantics.

Table 3 defines transitions due to the execution of statements. All

these transitions are local to the runtime contract and time does not

change. Therefore, for simplicity, we always omit the clock.We only

discuss [Asset_Send] and [Asset_Update] because the other rules are

standard. Rule [Asset_Send] returns part of an asset h to the partyA.
This part, namedv , is removed from the asset, c.f. the memory of the

right-hand side runtime contract in the conclusion. In a similar way,

[Asset_Update] moves a part v of an asset h to an asset h1
. For this

reason, the final memory becomes ℓrh ÞÑ ℓphq´v, h1 ÞÑ ℓph1q`vs.

We observe that assets, representing physical entities (coins, houses,

goods, etc.) are never destroyed. The condition ℓphq ě v in the

premises ensures that assets can never become negative.

The semantics of Stipula does not consider runtime errors, for

instance an attempt to drain too much value from an asset results

in a stuck configuration. We postpone to future work a precise

account of runtime failures and contract errors, since it requires a

deep interdisciplinary analysis of the legal issues involved in the

execution of the exceptional cases.

The initial configuration of a Stipula program P made of a single

contract C is Cp-- , ∅ , -- , --q , t. The contract is inactive as long
as no group of addresses has interest to run it, c.f. rule [Agree].

The global clock can be any value, because it corresponds to the

absolute time, defined by the timestamp of the current block in the

blockchain system.

Example 4.1. Possible initial transitions of the Bike_Rental con-
tract in Example 3.1 are reported in Table 4. We assume that the

actual names of parties are the same as the formal names (therefore

we omit the mappings in the memories).

Let be α “ Lender SET rtime_limit ÞÑ 3600, cost ÞÑ 2s }

Borrower OK rtime_limit ÞÑ 3600, cost ÞÑ 2s and ℓ “ rcost ÞÑ

2, time_limit ÞÑ 3600s (i.e. the cost of renting a bike is 2 euro per

hour – the time is measured in seconds. Let also be ℓ1 “ ℓrz ÞÑ

123, use_code ÞÑ 123s and S W be the body of the function accept.

To sum up, a legal contract behaves as follows:

(1) the first action is always an agreement, which moves the

contract to an idle state;
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[Agree]

agreement(A1, ¨ ¨ ¨ , An){ Ai =SET=> xi ¨ ¨ ¨ Aj =OK=> xj
iPI jPJ u ñ @Q P C

α “ Ai SET rxi ÞÑ vi s } ¨ ¨ ¨ } Aj OK rxj ÞÑ vj s rxi ÞÑ vi siPI “ rxj ÞÑ vj sjPJ

Cp-- , H , -- , --q , t
α

ÝÑ CpQ , rAi ÞÑ Ai , xi ÞÑ vi siPI , -- , --q , t
[Function]

@Q A : f(z)[y] (B) { S W } ñ @Q1 P C
Ψ , t Û

ℓpAq “ A ℓ1 “ ℓrz ÞÑ u, y ÞÑ vs JBKℓ1 “ true

CpQ , ℓ , -- , Ψq , t
A:fpuqrvs

ÝÑ CpQ; ℓ1 , S W ñ @Q1 , Ψq , t

[State Change]

JWtt{nowuKℓ “ Ψ1

CpQ , ℓ , -- W ñ @Q1 , Ψq , t ÝÑ CpQ1 , ℓ , -- , Ψ
1 | Ψq , t

[Event Match]

Ψ “ t " @Q t S u ñ @Q1 | Ψ1

CpQ , ℓ , -- , Ψq , t ÝÑ CpQ , ℓ , S ñ @Q1 , Ψ1q , t

[Tick]

Ψ , t Û

CpQ , ℓ , -- , Ψq , t ÝÑ CpQ , ℓ , -- , Ψq , t ` 1

Table 2: The transition relation of Stipula – Part 1

[Value_Send]

JEKℓ “ v ℓpAq “ A

CpQ , ℓ , E Ñ A Σ , Ψq
vÑA
ÝÑ CpQ , ℓ , Σ , Ψq

[Asset_Send]

JEKℓ “ v ℓphq ě v ℓpAq “ A

CpQ , ℓ , E ⊸ h,A Σ , Ψq
v⊸A
ÝÑ CpQ , ℓrh ÞÑ ℓphq ´ vs , Σ , Ψq

[Field_Update]

JEKℓ “ v

CpQ , ℓ , E Ñ x Σ , Ψq ÝÑ CpQ , ℓrx ÞÑ vs , Σ , Ψq

[Asset_Update]

JEKℓ “ v ℓphq ě v

CpQ , ℓ , E ⊸ h,h1 Σ , Ψq

ÝÑ CpQ , ℓrh ÞÑ ℓphq ´ v, h1 ÞÑ ℓph1q ` vs , Σ , Ψq

[Cond_true]

JBKℓ “ true

CpQ , pBqtSu Σ , Ψq ÝÑ CpQ , ℓ , S Σ , Ψq

[Cond_false]

JBKℓ “ f alse

CpQ , pBqtSu Σ , Ψq ÝÑ CpQ , ℓ , Σ , Ψq

Table 3: The transition relation of Stipula – Part 2

Bike_Rentalp-- , H , -- , --q , 0
α

ÝÑ Bike_RentalpInactive , ℓ , -- , --q , 0 [Agree]

ÝÑ Bike_RentalpInactive , ℓ , -- , --q , 1 [Tick]

Lender:offer(123)
ÝÑ Bike_RentalpInactive , ℓrz ÞÑ 123s , z Ñ use_code ñ @Proposal , --q , 1 [Function]

ÝÑ Bike_RentalpInactive , ℓ1 , -- ñ @Proposal , --q , 1 [Field_Update]

ÝÑ Bike_RentalpProposal , ℓ1 , -- , --q , 1 [State_Change]

ÝÑ Bike_RentalpProposal , ℓ1 , -- , --q , 2 [Tick]

ÝÑ Bike_RentalpProposal , ℓ1 , -- , --q , 3 [Tick]

Borrower:accept[2]
ÝÑ Bike_RentalpProposal , ℓ1ry ÞÑ 2s , S W ñ @End , --q , 3 [Function]

Table 4: Initial transitions of Bike_Rental

(2) in an idle state, fire any ready event with a matching state.

If there is one, execute its handler until the end, which is an

idle state;

(3) if there is no event to be triggered in an idle state, either tick
or call any permitted function (i.e. with matching state and

preconditions). A function invocation amounts to execute

its body until the end, which is again an idle state.

Therefore, we observe that Stipula has three sources of nonde-
terminism: (i) the order of the execution of ready event handlers,

(ii) the order of the calls of permitted functions, and (iii) the delay
of permitted function calls to a later time (thus, possibly, after other

event handlers). For example, the contract C with two functions @Q

A:f{--}ñ@Q and @Q A1:g{--}ñ@Q behaves as either
A:f
ÝÑÝÑn

A1:g
ÝÑ

or

A1:g
ÝÑÝÑn

A:f
ÝÑ, where ÝÑn are transitions that make the time

elapse (rule [Tick]). As another example, consider a contract C1
with

a function @Q A:f {-- now " @Q1{ "hello"ÑA }ñ@Q1 }ñ@Q
and a function @Q A1:g {--}ñ@Q1

. Then it may behave as either

A:f
ÝÑ

A1:g
ÝÑ

’’hello’’ÑA
ÝÑ or as

A:f
ÝÑÝÑn

A1:g
ÝÑ, after which the action

’’hello’’ÑA
ÝÑ is disabled, or as

A1:g
ÝÑ, which precludes the call of f.

Remark. The semantics of Stipula may be easily extended to

configurations with several smart legal contracts. It is sufficient to
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consider configurations as consisting of sets of runtime contracts

and to change the rule [Tick]. To illustrate the general case, let

C “ C1pΦ1 , ℓ1 , Σ1 , Ψ1q, ¨ ¨ ¨ , CnpΦn , ℓn , Σn , Ψnq. We define

EventspCq
def
“ Ψ1 | ¨ ¨ ¨ | Ψn . The new rule [Tick] becomes

[Tick+]

EventspCq , t Û

C , t ÝÑ C , t ` 1

5 STIPULA LAWS AND EQUATIONAL THEORY
The operational semantics of Tables 2 and 3 is too intensional

because it defines the behaviour of a legal contract without showing

any evidence of the differences between contracts. Nevertheless, it

is the base for defining a more appropriate, extensional semantics

using a standard technique based on observations [19]. According

to this technique, two contracts cannot be separated if a party using

them cannot distinguish one form the other. Said otherwise, a party

can differentiate two contracts if he can observe different interactions.
It turns out that defining the observations is a critical point of the

overall technique, because it allows to fine-tune the discriminating

power of the extensional semantics. The appropriate observations

for smart legal contracts match the design principles of Stipula: let
A be a party, then

‚ A should observe the agreement that he is going to sign,

because stipulating a different agreement may be unsatisfac-

tory; therefore we envisage the observations A SET rx ÞÑ vs

and A OK rx ÞÑ vs;

‚ A should also observe the permission or the prohibition to

invoke a functionality at a given time t, i.e. whether A :

fpvqrws is possible at t or not;
‚ A should finally observe whether at t he can receive a value
or an asset, i.e. whether v Ñ A or v ⊸ A are possible at t
or not.

The ordering of invocations and receives can be safely overlooked,

as long as they belong to the same block of transactions, that is

they are executed at the same global time. Notice also that the

above observations allow a party to observe contract’s obligations.
Indeed, by shifting the observation at a specific point in time, one

can observe the effects of executing the event that encodes a legal

commitment, such as the issue of a sanction or the impossibility

to do further actions. On the other hand, the foregoing notion of

observations abstracts away from the names of the contract’s assets

and internal states.

We will use the following notations:

‚ Let R be either SET or OK, then we writeA R rx ÞÑ vs P α if α
containsA R rz ÞÑ ws and rx ÞÑ vs occurs in the sequence of

assignments rz ÞÑ ws. We write α „ α 1
whenever A R rx ÞÑ

vs P α if and only if A R rx ÞÑ vs P α 1
. Intuitively, α and

α 1
express the same agreement up to reordering of the field

assignemnts.

‚ Let be

µ
ùñ

def
“ ùñ

µ
ÝÑùñ, where ùñ stands for any num-

ber of ÝÑ transitions, possibly zero.

The following definition of legal contract equivalence compares

the observable behavior of contracts. It is defined over configura-

tions, so to appropriately shift the time of the contract’s observa-

tions. The equivalence is defined as a suitable bisimulation game

that is consistent with the idea that in blockchain systems the

interactions are batched in blocks of transactions.

Definition 5.1 (Legal Bisimulation). A symmetric relation R is a

legal bisimulation between two configurations at time t, written
C1,t R C2,t, whenever

(1) if C1,t
α

ùñ C1
1
,t then C2,t

α 1

ùñ C1
2
,t for some α 1

such

that α „ α 1
and C1

1
,t R C1

2
, t;

(2) if C1,t
µ1

ùñ ¨ ¨ ¨
µn

ùñ C1
1
, t ÝÑ C1

1
, t ` 1 then there ex-

ist µ1
1

¨ ¨ ¨ µ1
n that is a permutation of µ1 ¨ ¨ ¨ µn such that

C2,t
µ 1
1

ùñ ¨ ¨ ¨
µ 1
n

ùñ C1
2
,t ÝÑ C1

2
,t`1 andC1

1
,t`1R C1

2
,t`

1.

Let » be the largest legal bisimulation, called bisimilarity. When

the initial configurations of contracts C and C1
are bisimilar, we

simply write C » C1
.

Being a symmetric relation, a legal bisimulation compares both

contracts’ permissions and prohibitions: if C permits an action

(i.e. exhibits an observation), then C1
must permit the same action,

and if C prohibits an action (i.e. does not exhibit a function call

or an external communication), then also C1
must not exhibit the

corresponding observation. Moreover, the bisimulation game en-

forces a transfer property, that is it shifts the time of observation

to the future, so to capture and compare the changes of permis-

sions/prohibitions and the (future) obligations. Observe that the

equivalence abstracts away the ordering of the observations within

the same time clock, since in a blockchain there is no strong no-

tion of ordering between the transactions contained in the same

block. Nevertheless, specific orderings of function invocations are

important in Stipula contracts and the equivalence cannot overlook
essential precedence constraints. For instance, the requirement that

a function delivering a service can only be invoked after another

specific function, say a payment. This is indeed the case for the

legal bisimulation. To explain, consider the contract C with two

functions @Q A:f{--}ñ@Q and @Q A1:g{--}ñ@Q and the contract

C1
with two functions @Q A:f{--}ñ@Q1

and @Q1 A1:g{--}ñ@Q. In C
the functions can be called in any order, while in C1

the function

g can be invoked only after f. Accordingly, C fi C1
since there is a

runtime configuration of C that exhibits the observation
A1

:g

ùñ, while

it is not the case for the contract C1
, since at any time it can only

exhibit

A:f
ùñ

A1
:g

ùñ.

The following theorem highlights the property that the internal

state of the contract is abstracted away by the extensional semantics,

which only observes the external contract’s behavior. The proof is

omitted because it is standard.

Theorem 5.2 (Internal refactoring). Let C and C1 be two con-
tracts that are equal up-to a bijective renaming of states. Then C » C1.
Similarly, for bijective renaming of assets and contract names.

Bisimilarity is also independent from future clock values. This al-
lows us to garbage-collect events that cannot be triggered anymore

because the time for their scheduling is already elapsed.

Theorem 5.3 (Time shift).

(1) If C,t » C1,t and t ď t1, then C,t1 » C1,t1.
(2) If t ă t1 then CpQ , ℓ , Σ , Ψ | t " @Q t S u ñ @Q1q , t1 »

CpQ , ℓ , Σ , Ψq , t1.
7
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We finally put forward a set of algebraic laws that formalize

the fact that the ordering of remote communications can be safely

overlooked, as long as they belong to the same transaction. The

laws are defined over statements, therefore, let Cr s be a context, that
is a contract that contains an hole where a statement may occur.

We write S » S1
if, for every context Cr s, CrSs » CrS1s.

Theorem 5.4. The following non-interference laws hold in Stipula
(whenever they are applicable, we assume x R fvpE1q and x1 R fvpEq

and h R fvpE1q and h1 R fvpE1q and h2 R fvpEq and h3 R fvpEq):

E Ñ A E1 Ñ A1 » E1 Ñ A1 E Ñ A
E Ñ x E1 Ñ A » E1 Ñ A E Ñ x
E Ñ x E1 Ñ x 1 » E1 Ñ x1 E Ñ x

E ⊸ h, A E1 Ñ A1 » E1 Ñ A1 E ⊸ h, A
E ⊸ h, A E1 Ñ x1 » E1 Ñ x1 E ⊸ h, A
E ⊸ h, h1 E1 Ñ A » E1 Ñ A E ⊸ h, h1

E ⊸ h, h1 E1 Ñ x1 » E1 Ñ x1 E ⊸ h, h1

E ⊸ h, A E1 ⊸ h2, A1 » E1 ⊸ h2, A1 E ⊸ h, A
E ⊸ h, A E1 ⊸ h2, h3 » E1 ⊸ h2, h3 E ⊸ h, A
E ⊸ h, h1 E1 ⊸ h2, h3 » E1 ⊸ h2, h3 E ⊸ h, h1

6 IMPLEMENTATION
The semantics of Section 4 has not only a theoretical interest but it

also drives us in the design of the implementation of Stipula. While

a full discussion about this subject is out of the scope of the present

work, we consider the three features that make the implementa-

tion of Stipula not trivial: agreements, assets, and events. (In this

paper, we are overlooking issues regarding errors and backtracks.)

Below, we analyze how they can be actually encoded in a lower

level, Solidity-like language, that can be more directly implemented

in the bytecode of some virtual machine running a mainstream

smart contract language (e.g. Ethereum Virtual Machine [25],Move
Virtual Machine [11]).

Agreements. The agreement code is technically a multiparty syn-
chronization that expresses a consensus between the parties to start

the contract with particular values of the (non-linear) fields. This

construct can be implemented by resorting to a barrier-like pro-

tocol, where each party Ai may call, in whatever order, a specific

function to propose the values he agrees on, and the barrier eventu-

ally checks the consistency of the proposed values before moving

the contract to the initial state. The following snippet of Solidity-
like code corresponds to the agreement code (see Section 3), where

we assume that the fields of the contract are x1,¨ ¨ ¨ ,xk with types

T1,¨ ¨ ¨ ,Tk , respectively.

address A1, ... , An ;

T1 x1; ... ; Tk xk ;

enum State {Nothing , Q}

State state = State.Nothing ;

int counter = 1 ;

T j
1

auxi _x j
1
;...; T jsi auxi _x jsi ; // 1 ď i ď n

bool use_oncei = true ; // 1 ď i ď n

function set_oki (Ti
1

zi
1
,...,Tiri ziri ,T j1 z j

1
,...,T jsi z jsi ){

// 1 ď i ď n

if (sender == Ai NN use_oncei ){

use_oncei = false ;

xi
1

= zi
1

; ... ; xiri = ziri ;

auxi _x j
1

= z j
1
;...; auxi _x jsi = z jsi ;

if (counter == n){

if (
Ź

1ďiďn (auxi _x j1 ==x j1 NN...NN auxi _x jsi ==x jsi )

) state = State.Q ;

else throw error;

} else counter = counter + 1 ;

} else throw error;

}

Each function set_oki can be called only once by the party Ai ,
with two lists of parameters: the first ri values are used to set the

contract’s fields xi1 , ¨ ¨ ¨ , xiri . The last si values are recorded into the
auxiliary fields auxi_xj1 , ¨ ¨ ¨ , auxi_xjsi , to express that Ai agrees
ex ante with anyone setting the contract’s fields xj1 , ¨ ¨ ¨ , xjsi to

the values zj1, ..., zjsi . When all the parties have done the

agreement, i.e. counter is equal to n, a check on the consistency of

auxi_xh is performed and, in case it succeeds, the contract becomes

active moving to the state Q. The snippet also shows that contract’s
states can be easily mapped to enumerations, as usual in the Solidity
State Machine pattern.

There is a discrepancy between the above code and the semantics

of the agreement in Table 2.While the agreement has a transactional

nature (it may occur as a whole or not), the above Solidity protocol

takes time, i.e. it is performed in several blocks and, in any block,

a failure may occur. In this case, there is a backtrack to the initial
state of the block and not to the initial state of the protocol, as it

happens in Stipula. Therefore, the error management should take

care of removing partial values stored in the fields of the contract.

Nevertheless, another source of discrepancy seems more awkward:

the gas consumption. In fact, the successful termination of the

agreement as well as the failed one have a cost in Ethereum, while

it is not the case. To bridge this gap, we should design agreements

with fees payed by parties that are used for the consensus. We have

not yet studied these details, which are postponed to future work.

Assets. Assets are linear resources that cannot be duplicated or

leaked: when a resource value is assigned, the location previously

holding the value is emptied. The community of smart contracts

has already recognized the relevance of having linear resources

as first-class entities in programming languages because they can

significantly simplify programming and the effort required for ver-

ification. Stipula features a simple abstraction to manage assets,

which is used to represent both currency and indivisible tokens. To

implement these assets we can resort to the popular token stan-

dards on Ethereum (ERC-20 for virtual currency and ERC-721 for

non fungible tokens[13]). Alternatively, we can rely on theMove
language, whose designers have featured programmable linear re-

sources by constraining them to adhere to ad-hoc rules specified by

its declaring module [7, 11]. Using a pseudo-code inspired toMove,
we might define (divisible) assets h and h1

as resources of type H,
so that the operations E ⊸ h, h1

and E ⊸ h, A may be encoded by

h.move(E,h1) and h.withdraw(E,A), according to the definitions

below:

resource H {
T amount ;

function move(T x, H h) {
(x <= amount){ h = h + x ; amount = amount - x ; }

}
function withdraw(T x, address A) {

(x <= amount){ A.send(x) ; amount = amount - x ; }
}
constructor(T x){ amount = x ; }

}
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Events. The current blockchain technologies do not admit the

record of statements that have to be performed afterwards in a

future transaction (with one exception to our knowledge: Cardano,

see Section 8). The standard technique adopted in Ethereum to

circumvent this limitation is based on the Solidity’s event construct
and off-chain oracle services. To explain, the Stipula event E" @Q
{ S }ñ @Q1

emitted by a function foo can be mapped to the

Solidity code:

event R(uint time , address lc) ;

function call_back_R () external {

if (state == State.Q) { S ; state = State.Q'; }

}

function foo(T1 u1 ,..., Tn un ){

...

emit R(E,address(this)) ;

}

The Solidity function foo emits an event named R carrying the

time E and the address of the issuing contract. Moreover, an exter-

nal DApp service – an oracle – scans the blockchain looking for R
events and calls the call_back_R function of the contract at the

appropriate time E. Other more complex and safer protocols can

be used. However a code external to the Ethereum blockchain is

always necessary in order to trigger the scheduled event handler. A

more satisfactory implementation of the Stipula events might adopt

ideas taken from the implementation of timeouts in theMarlowe
and Findel languages for financial contracts [21, 24] as discussed
in Section 8.

7 EXPRESSIVITY OF STIPULA
Stipula has been devised for writing legal contracts in a formal and

intelligible (to lawyers) way. In this section we analyze the expres-

sivity of Stipula by writing the contracts for a set of archetypal acts,
ranging from renting to (digital) licenses and to bets. We conclude

this analysis with a table that summarizes the legal elements of the

archetypal acts and the programming abstractions that we have

used to express them in Stipula.

7.1 The free rent contract
The free rent is the simplest kind of legal contract. It involves two

parties, the lender and the borrower, which initially agree about

what good is rented, what use should be made of it, the time limit

(or in which case it must be returned), the estimated of value and

any defects in the good. Upon agreement, the delivery of the good

triggers the legal bond, that is the borrower has the permission

to use the good and the lender has the prohibition of preventing

him from doing so. Note that there is no transfer of ownership,

but only the right to use the good. The contract terminates either

when the borrower returns the good, or when the time limit is

reached. Litigations could arise when the borrower violates the

obligations of diligent storage and care, the obligations of using the

good only as intended, and not granting the use to a third party

without the lender’s consent. In these cases the lender may demand

the immediate return of the object, in addition to compensation

for the damage. On the other hand, the borrower is entitled to

compensation if the good has defects that were known to the lender

but that he did not initially disclose.

The free rent contract puts forward the following points:

‚ When a legal contract refers to a physical good, the smart

contract needs a digital handle (an avatar) for that good.

Many technological solutions, such as smart locks of IoT

devices, are actually available. In Stipula we abstract from
the specific nature of such a digital handle, and we simply

represent it as an asset, which intuitively corresponds to a

non fungible token associated to the physical good.

‚ The rent legal contract grants just the usage of a good with-

out the transfer of ownership. Accordingly, while the com-

munication of the token provides full control of the associ-

ated physical good, we assume an operation uses(token)
(resp. use_once(token) or uses(token,A)) that generates
a usage-code providing access to the object associated to the

token (resp. a usage-code only valid (once) for the party A).
‚ In a legal rent contract it is important to acknowledge the

delivery of the good, since this is the action that triggers

the legal bonds. We rely on assets and their semantics to
implement this feature.

The Stipula code for the free rent of a locker is written in List-

ing 2. The two parties agrees on the time limit for the locker usage

(time_limit) and the time limit to start the usage (time_start).
Contract’s states allow one sequence of actions: first Lender sends

the number n of the locker and the token t associated to n by call-

ing box_proposal (line 10). This action moves the contract to the

temporary state Proposal and schedule the event in line 13. This

event is essential to prevent the unique token associated to the

locker to be indefinitely locked-in in the smart contract when the

borrower never calls the boxUse function to finalize the delivery

of the good. If Borrower calls the function boxUse (line 16) within

the timeout time_start, then the number of the rented locker and

the access code are returned. At the same time, a second timeout is

installed to check the time limit for the locker usage, and the final

state change to Using (line 21) vanishes the timeout installed in

line 13. This second event is needed to prevent a never ending use

of the locker. If time_limit is reached and the contract’s state is

still Using, then (lines 18-19) a message is sent to Borrower and the
token is sent back to Lender, which becomes again in full control

of the locker and can thus invalidate the access code held by the

borrower. Otherwise, the rent contract can terminate because the

borrower explicitly returns the good before the time limit. This is

represented by a call of the function returnBox (line 23).

1 legal_contract Free_Rent {

2 assets token

3 fields numBox , t_start , t_limit

4

5 agreement (Lender , Borrower) {

6 Lender =SET=> t_start , t_limit

7 Borrower =OK=> t_start , t_limit

8 } ñ @Inactive

9

10 @Inactive Lender : boxProposal (n)[t] {

11 t ⊸ token

12 n Ñ numBox

13 now + t_start " @Proposal {

14 token ⊸ Lender } ñ @End

15 } ñ @Proposal

16

17 @Proposal Borrower : boxUse {

18 (uses(token), numBox) Ñ Borrower

19 now + t_limit " @Using {

20 "Time_Limit_Reached" Ñ Borrower

9
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21 token ⊸ Lender

22 } ñ @End

23 } ñ @Using

24

25 @Using Borrower : returnBox {

26 token ⊸ Lender

27 } ñ @End

28 }

Listing 2: The rent for free contract

The smart legal contract of Listing 2 does not consider the com-

pensations that would be needed to deal with the disputes due to

breaches of the contract, such as the borrower’s diligent care during

the locker’s usage. These violations require off-chain monitoring

and a dispute resolution mechanism. The next example illustrates

how this off-chain monitoring and enforcement can be combined

with the on-chain code.

7.2 The Digital Licensee contract
Let us consider a contract corresponding to a licence to access a

digital service, like a software or an ebook: the digital service can

be freely accessed for a while, and can be permanently bought

with an explicit communication within the evaluation period (for a

similar example, see [16]). The licensing contractual clauses can be

described as follows:

Article 1. Licensor grants Licensee for a licence to evaluate
the Product and fixes (i) the evaluation period and (ii) the
cost of the Product if Licensee will bought it.

Article 2. Licensee will pay the Product in advance; he will

be reimbursed if the Product will not be bought with an

explicit communication within the evaluation period. The

refund will be the 90% of the cost because the 10% is payed

to the Authority (see Article 3).
Article 3. Licensee must not publish the results of the evalu-

ation during the evaluation period and Licensormust reply

within 10 hours to the queries of Licensee related to the

Product; this is supervised by Authority that may inter-

rupt the licence and reimburse either Licensor or Licensee
according to whom breaches this agreement.

Article 4. This license will terminate automatically at the end

of the evaluation period, if the licensee does not buy the

product.

Compared to the previous example, this contract involves pay-

ment and refund: an amount of currency is escrowed, and two

parts of it will be sent to different parties, the Authority and ei-

ther the Licensor or the Licensee. Stipula provides the general
asset abstraction, together with a general operation to move just

a (positive) subset of the asset to a different owner. This is exactly

what is needed to deal with currency, therefore the Stipula licence
contract holds two different assets: an indivisible token providing

an handle to the digital service, and a balance that is a divisible

asset corresponding to the amount of currency kept in custody

inside the smart contract.

A further important feature of the contract is Article 3 that de-

fines specific constraints about the off-chain behaviour of Licensor
and Licensee. This exemplifies the very general situations where

contract’s violations cannot be fully monitored by the on-chain

software, such as the publication of a post in a social network, or

the leakage of a secret password, or the violation of the obligation

of diligent storage and care. In all these cases, it is required a trusted

third party, say an Authority, to supervise the disputes occurring

from the off-chain monitoring and to provide a trusted dispute res-

olution mechanism. The code in Listing 3 illustrates the encoding

of the off-chain monitoring and enforcement mechanism with the

on-chain smart contract code in Stipula.

1 legal_contract Licence {

2 assets token , balance

3 fields cost , t_start , t_limit

4

5 agreement (Licensor ,Licensee ,Authority) {

6 Licensor =SET=> cost , t_start , t_limit

7 Licensee =OK=> cost , t_start , t_limit

8 Authority =OK=> _

9 } ñ @Inactive

10

11 @Inactive Licensor : offerLicence [t] {

12 t ⊸ token

13 now + t_start " @Proposal {

14 token ⊸ Licensor } ñ @End

15 } ñ @Proposal

16

17 @Proposal Licensee : activateLicence [b]

18 (b == cost){

19 b ⊸ balance

20 balance *0,1 ⊸ balance , Authority

21 uses(token ,Licensee) Ñ Licensee

22 now + t_limit " @Trial {

23 balance ⊸ Licensee

24 token ⊸ Licensor

25 } ñ @End

26 } ñ @Trial

27

28 @Trial Licensee : buy {

29 balance ⊸ Licensor

30 token ⊸ Licensee

31 } ñ @End

32

33 @Trial Authority : compensateLicensor {

34 balance ⊸ Licensor

35 token ⊸ Licensor

36 } ñ@End

37

38 @Trial Authority : compensateLicensee {

39 balance ⊸ Licensee

40 token ⊸ Licensor;

41 } ñ @End

42 }

Listing 3: The contract for a digital licence

The agreement of Listing 3 involves three parties: Licensor,
which fixes the parameters of the contract, according to Article

1., Licensee, which explicitly agrees, and Authority, which does

not need to agree upon the contracts’ parameters (i.e. the empty-

set agreement noted --), but it is important that it is involved in

the agreement synchronization, because it plays the role of the

trusted third party that is entitled to call the functions compen-
sateLicensor and compensateLicensee.

In activateLicence, the caller, i.e. the Licensee, is required
to send an amount of assets equal to the fixed cost of the license.

Notice the difference between line 19 and line 20: the first one is

the move of a fraction of asset towards the authority, while the

second is the simple communication to Licensee of a personal

usage code associated to the token. Once entered in the Trial
state, the contract can terminate in three ways: (i) the licensee

10
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expresses its willingness to buy the licence by calling the function

call which grants him the full token, or (ii) the time limit for

the free evaluation period is reached, thus the scheduled event

refunds the licensee and gives the token back to the licensor, or (iii)
during the evaluation period a violation to Article 3 is identified and

the authority pre-empts the license by calling either the function

compensateLicensor or compensateLicensee. Observe that it is
important that the code guarantees that, in all the possible cases, the

assets, both the token and the balance, are not indefinitely locked-in

the contract.

7.3 A bet contract
The bet contract is a simple example of a legal contract that contains

an element of randomness (alea), i.e. where the existence of the
performances or their extent depends on an event which is entirely

independent of the will of the parties. The main element of the

contract is a future, aleatory event, such as the winner of a football

match, the delay of a flight, the future value of a company’s stock.

A digital encoding of a bet contract requires that the parties

explicitly agree on the source of data that will determine the final

value of the aleatory event (the Data Provider), that is a specific
online service, an accredited institution, or any trusted third party.

It is also important that the digital contract provides precise time

limits for accepting payments and for providing the actual value

of the aleatory event. Indeed there can be a number of issues: the

aleatory event does not happen, e.g. the football match is cancelled,

or the data provider fails to provide the required value, e.g. the
online service is down.

1 legal_contract Alea {

2 assets bet1 , bet2

3 fields alea_fact , val1 , val2 , data_source ,

4 fee , amount , t_before , t_after

5

6 agreement(Better1 ,Better2 ,DataProvider ){

7 DataProvider =SET=> fee , data_source

8 DataProvider =OK=> t_after , alea_fact

9 Better1 =SET=> alea_fact , amount , t_before , t_after

10 Better1 =OK=> fee , data_source

11 Better2 =OK=> alea_fact , amount , fee , t_before , t_after ,

12 data_source

13 } ñ @Init

14

15 @Init Better1 : place_bet(x)[y]

16 (y == amount ){

17 y ⊸ bet1

18 x Ñ val1

19 t_before " @First { bet1 ⊸ Better1 } ñ @Fail

20 } ñ @First

21

22 @First Better2: place_bet(x)[y]

23 (y == amount ){

24 y ⊸ bet2

25 x Ñ val2

26 t_after " @Run {

27 bet1 ⊸ Better1

28 bet2 ⊸ Better2 } ñ @Fail

29 } ñ @Run

30

31 @Run DataProvider : data(x,z)[]

32 (x== alea_fact ){

33 (z==val1){ // The winner is Better1

34 fee ⊸ bet2 ,DataProvider

35 bet2 ⊸ Better1

36 bet1 ⊸ Better1

37 }

38 (z==val2){ // The winner is Better2

39 fee ⊸ bet1 ,DataProvider

40 bet1 ⊸ Better2

41 bet2 ⊸ Better2

42 }

43 (z != val1 NN z != val2){ //No winner

44 bet1 ⊸ DataProvider

45 bet2 ⊸ DataProvider

46 }

47 } ñ @End

48 }

Listing 4: The contract for a bet

The Stipula code in Listing 4 corresponds to the case where

Better1, respectively Better2, places val1, respectively val2, a
bet corresponding to the agreed amount of currency, stored in the

contract’s assets bet1 and bet2 respectively1. Observe that both
bets must be placed within an (agreed) time limit t_before (line 17),
to ensure that the legal bond is established before the occurrence

of the aleatory event. The second timeout, scheduled in line 24, is

used to ensure the contract termination even if the DataProvider
fails to provide the expected data, through the call of the function

data.
Compared to the Digital Licence in Listing 3, the role of the

DataProvider here is less pivotal than that of the Authority.
While it is expected that Authoritywill play its part, DataProvider
is much less than a peer of the contract. It is sufficient that it is an

independent party that is entitled to call the contract’s function

to supply the expected external data. The crucial point of trust

here is the data_source, not the DataProvider. In other terms,

since the parties involved in the agreement need not to trust each

other, it might happen that DataProvider supplies an incorrect

value through the function data. In this case, the betters can appeal

against the data provider since they agreed upon the data emit-

ted by the data_source. As usual, any dispute that might render

the contract voidable or invalid, e.g. one better knew the result of

the match in advance, can be handled by adding to the code of an

authority party, according to the pattern illustrated in the Digital

Licence example.

7.4 Specification patterns in Stipula
The clauses of the foregoing legal acts have been specified in Stipula
by means of patterns that, in our view, are common from the juridi-

cal point of view. This is summarized in Table 5.

8 RELATEDWORKS
A number of projects have put forward legal markup languages,

to wrap logic and other contextual information around traditional

legal prose, and providing templates for common contracts. Open-

Law [26] also allows to reference Ethereum-based smart contracts

into legal agreements, and automatically trigger them once the

agreement is digitally signed by all parties. Signatures by all rel-

evant parties are stored on IPFS (the Inter-Planetary File System)

and the Ethereum blockchain. The Accord project [22] provides an

open, standardized format for smart legal contracts, consisting of

natural language and computable components. These contracts can

1
For simplicity, this code requires Better1 to place its bet before Better2, however it
is easy to add similar function to let the two bets be placed in any order.
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Example Legal clauses Smart Encoding in Stipula

Free rent Permission and Prohibition States of the contract to allow or prevent the call of a function

Obligation to return the good Event: timeout that triggers a repercussion

Access to a physical good without transfer

of ownership

(non fungible) Token: transfer only a usage code associated to the Token,

i.e. operation uses(token,L)Ñ L

Prohibition of preventing the usage Token held in custody in the smart contract

Digital License Permission, Prohibition, and Obligation States and Events

Currency and escrow (divisible) Asset

Usage and purchase

Token: either transfer only an associated, and personal, us-

age code, or transfer the token, i.e. uses(token,L)Ñ L and
token⊸ L

Off-chain constraints and Authority for dis-

pute resolution

Implicitly trusted party included in agreement

Bet Commitment and Obligation Event

Aleatory value Event: timeout to decide the effective value

Authority that decides the value Explicitly trusted party included in agreement

Table 5: Legal clauses of the archetypal legal acts and their encodings in Stipula

then be interpreted by machines but they do not necessarily operate

on blockchains. These projects come with sets of templates for stan-

dard legal contracts, that can be customized by setting template’s

parameters with appropriate values. In Stipula, rather than software
templates, it is possible to define specific programming patterns

that can be used to encode the building blocks of legal contracts.

(see the Table 5). Lexon [14] uses context free grammars to define

a programming language syntax that is at the same time human

readable and automatically translated into, e.g. Solidity. Even if the

high level Lexon code is very close to natural language, there is no

real control over the code that is actually run: the semantics of the

high level language is not defined, thus the actual behaviour of the

contract is that of the automatically generated Solidity code, which
might be muchmore subtle than that of the (much simpler andmore

abstract) Lexon source. Compared to the Solidity code of the Lexon
examples in [15], the Stipula version of the same contracts is much

clearer, thanks to primitives like agreement and asset movements.

Thus, directly coding in Stipula appears to be safer than relying on

the Lexon-Solidity pair. Nevertheless, it should be not difficult to

design an automatic translation from Lexon to Stipula.
Our work aims at conducing a foundational study of legal con-

tracts, in order to elicit a precisely defined set of building blocks

that can be used to describe, analyse and execute (thus enforce)

legal agreements. This is similar to what has been done in [17],

which puts forward a set of combinators expressing financial and

insurance contracts, together with a denotational semantics and

algebraic properties that says what such contracts are worth. These

ideas have been ported on the (Cardano) blockchain by theMarlowe

language [5], which is a small domain specific language featuring

constructs like participants, tokens, currency and timeouts to wait

until a certain condition becomes true (similarly to Stipula).
In Marlowe, money cannot be locked forever in a contract be-

cause financial contracts have a finite lifetime, at the end of which

any remaining money is returned to the participants. In Stipula, the
finite lifetime of a contract may be easily programmed by arranging

its value during the agreement phase, and issuing a corresponding

event in the initial state. Marlowe semantics is written in Haskell

and is executed on the Cardano blockchain almost directly because

the bytecode is very similar to Haskell (at the time of writing, Car-

dano developers are defining a bytecode language called Plutus). In

the Cardano implementation of Marlowe, the lifetime is computed

in terms of slot numbers, after which a transaction is issued that

closes the contract (refund all the money in its account) [21]. It

turns that Cardano leverages scripts that express conditions on

the time [5]. This means that Stipula events can be implemented

in Cardano by using slot numbers, as well. However, porting an

imperative language like Stipula to Cardano amounts to writing an

interpreter/compiler that manages contract executions following

a continuation-passing style. Overall, this is an issue that merits

future investigations.

The class-based programming style of Stipula is similar to that of

Solidity, but there are many differences between the two. Actually,

Stipula is much similar to Obsidian [9], which is based on state-

oriented programming and explicit management of linear assets,

whose usability has been experimentally assessed [8]. Obsidian has

a type system that ensures the correct manipulations of objects

according to their current states and that linearly typed assets

are not accidentally lost. On the contrary, Stipula is untyped: the
introduction of a type discipline is orthogonal and is postponed to

a later stage where we plan to investigate static analysis techniques

specifically suitable to the legal setting. As a cons, Obsidian has

no agreement nor event primitives, therefore the consensus about

the contract’s terms and the enforcing of legal obligations must be

implemented in a much more indirect way.

12
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9 CONCLUSIONS
This paper presents a domain-specific language for defining legal

contracts that can be automatized on a blockchain system. Stipula
features a distilled number of operations that enable the formali-

sation of the main elements of juridical acts, such as permissions,

prohibitions, and obligations. Stipula is formal and we are proud of

its semantics – the legal bisimulation – that allows one to equate

contracts that differ for clauses (events) that can never be triggered

or for the order of non-interfering communications. Furthermore,

the Stipula semantics has also been used for sketching an imple-

mentation on top of the Ethereum blockchain.

We believe that a range of legal arrangements can be adequately

translated into Stipula, using simple patterns for the key elements

of legal contracts (see the archetypal examples in the Appendix).

Nevertheless we acknowledge that legal contracts cannot be fully

replaced by Stipula contracts, since the formers thoroughly use the

flexibility and generality of natural languages, may appeal to com-

plex and undetermined social-normative concepts (such as fairness

or good faith), may need to be revised as circumstances change,

may need intelligent enforcements in case on non-compliance, etc.

It is matter of (our) future research to deeply investigate these

interdisciplinary aspects and provide at lest partial solutions.

From the computer science point of view, a number of issues

deserve to be investigated in full detail: the extension of the lan-

guage with operations for failures, devising linear type systems that

enforce the partial correctness of Stipula codes, the implementation

of the language, the definition of a (formal) translation in Stipula of
a high level language, such as Lexon or part of it, in order to relieve

lawyers from understanding computer science jargons.

Overall, we are optimistic that future research on Stipula can

satisfactorily address the above issues because its model is simple

and rigorous, which are, in our opinion, fundamental criteria for

reasoning about legal contracts and for understanding their basic

principles. In our mind, Stipula is the backbone of a framework

where addressing and studying other, more complex features that

are drawn from juridical acts.
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A TECHNICAL APPENDIX
Theorem 5.4. The following non-interference laws hold in Stipula
(whenever they are applicable, we assume x R fvpE1q and x1 R fvpEq

and h R fvpE1q and h1 R fvpE1q and h2 R fvpEq and h3 R fvpEq):

E Ñ A E1 Ñ A1 » E1 Ñ A1 E Ñ A
E Ñ x E1 Ñ A » E1 Ñ A E Ñ x
E Ñ x E1 Ñ x 1 » E1 Ñ x1 E Ñ x

E ⊸ h, A E1 Ñ A1 » E1 Ñ A1 E ⊸ h, A
E ⊸ h, A E1 Ñ x1 » E1 Ñ x1 E ⊸ h, A
E ⊸ h, h1 E1 Ñ A » E1 Ñ A E ⊸ h, h1

E ⊸ h, h1 E1 Ñ x1 » E1 Ñ x1 E ⊸ h, h1

E ⊸ h, A E1 ⊸ h2, A1 » E1 ⊸ h2, A1 E ⊸ h, A
E ⊸ h, A E1 ⊸ h2, h3 » E1 ⊸ h2, h3 E ⊸ h, A
E ⊸ h, h1 E1 ⊸ h2, h3 » E1 ⊸ h2, h3 E ⊸ h, h1

Proof. We prove the first equality. Let be S1 “ E Ñ A E1 Ñ A1

and S2 “ E1 Ñ A1 E Ñ A, and let be C1 “ CrS1s and C2 “ CrS2s,

then we need to prove that C1p--,∅, --, --q,t » C2p--,∅, --, --q,t. Let
also Ci “ Ci pΦ, ℓ, --,ΨrSi sq, with i “ 1, 2, be the runtime contract

where the statement Si occurs within a number of handlers of

future events. We demonstrate that the symmetric closure of the
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following relation is a legal bisimulation:

t
`

C1p--,∅, --, --q,t , C2p--,∅, --, --q,t
˘

u

Y t
`

C1pQ, ℓ, --,ΨrS1sq,t1 , C2pQ, ℓ, --,ΨrS2sq,t1
˘

| for every Q, ℓ,Ψr s, t1 u

Indeed, notice that the statement E Ñ A E1 Ñ A1
can only con-

tribute to the behavior of C with a couple of transitions during the

evaluation of the body of a function or the evaluation of an event

handler. Therefore the statement must be completely executed with

the same time clock, possibly a number k of times due to the multi-

ple function calls and event handlers that are executed during the

same time clock.

Formally, if C1, t1
µ1

ùñ ¨ ¨ ¨
µn

ùñ C1
1
, t1 ÝÑ C1

1
, t1 ` 1, then the

sequence µ1 ¨ ¨ ¨ µn contains k occurrences of the pair v Ñ A,v1 Ñ

A1
. Similarly, there exist µ1

1
¨ ¨ ¨ µ1

n and a configuration C1
2
, t1

such

that C2, t1
µ 1
1

ùñ ¨ ¨ ¨
µ 1
n

ùñ C1
2
, t1 ÝÑ C1

2
, t1 ` 1, where the sequence

µ1
1

¨ ¨ ¨ µ1
n is identical to µ1 ¨ ¨ ¨ µn but for the k occurrences of the

pair v Ñ A,v1 Ñ A1
that has been swapped into v1 Ñ A1,v Ñ A.

The argument also holds in the converse direction.

□
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