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Legal contracts are sets of clauses specifying protocols that regulate the legal interactions between
different parties. These clauses may contains errors, such as defining rules that can never be applied
because of unreachable circumstances or of wrong time constraints. Since these erroneous clauses
may jeopardise the agreement of a contract by parties, it is worth to spot and remove them when the
contract is drawn up. In this paper we analyze this issue when the contract text is written in Stipula,
a domain specific language for designing legal contracts. In particular, we discuss both the theory of
the reachability analyzer and the prototype that has been integrated in the language toolchain.

1 Introduction

Contracts are sets of clauses that define protocols regulating legal relationships between parties in terms
of permissions, obligations and prohibitions. According to modern legal systems, these protocols can be
expressed by the parties using the language and medium they prefer (principle of freedom of form) [20],
including a programming language. The benefits of using programming languages are evident and have
been widely recognized in several projects [14, 21, 19]: they lower the overall transaction costs involved
in a contract lifecycle by enabling the identification of potential inconsistencies, reducing the complexity
and ambiguity of legal texts and allowing the automatic execution of clauses. For these reasons, in [8,
9, 17] we have developed a domain-specific language for legal contracts, called Stipula, with a formal
operational semantics [9], so that the behaviour of a contract is fully specified, and with a toolchain [10]
that includes a prototype implementation, a graphical interface and an extension supporting runtime
contract amendments.

This contribution intends to strengthen the Stipula toolchain with tools supporting safe contract
drawing. Two techniques have been already studied: [9] defines a type inference system that allows
to automatically derive types for fields, assets and contracts’ functions, thus preventing basic errors with
contract’s data and assets; [16] reports an analyzer that statically checks the presence of executions leav-
ing assets frozen into the contract without being redeemable by any party (liquidity). Now we analyze the
presence of unreachable clauses in contracts, i.e. clauses that can never be applied because of unreach-
able circumstances or of wrong time constraints. In the legal contract domain, removing unreachable
clauses when the contract is drawn up is substantial because they might be considered too oppressive by
parties and make the legal relationship fail.

Spotting and removing unreachable code is a very common optimization in compiler construction
of programming languages and the literature already reports techniques for affording this issue [1, 5].
However Stipula and, in general, legal contracts have an additional difficulty: the presence of clauses
that are triggered by time expressions – these clauses are called events, in Stipula. If the time expres-
sions are logically inconsistent with the contract behaviour, the event itself and its continuation become
unreachable and can be safely removed.
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To address time anomalies, we define an evaluator that computes the logical times of clauses by
means of variables representing the times of function clauses. Then the analyzer generates constraints
on logical times and verifies that they are solvable. When constraints are unsolvable, the list of the
corresponding clauses (which are therefore unreachable) is returned. The critical point is when a clause
can be executed cyclically because, in this case, reachability may be achieved by several instances of the
same clause. In this respect, since Stipula contracts may display very subtle reachability dependencies,
we decided to adopt a combination of time analysis and standard, untimed one: time analysis is used for
acyclic clauses, while time expressions are overlooked in the other clauses.

In order to ease our arguments, in the first part of the paper we consider a lightweight version of
Stipula, called µStipula – read micro-Stipula –, that already highlights all the relevant issues of the
reachability analysis. We define an algorithm for the reachability analysis in µStipula and demonstrate
the correctness of the algorithm. Then the technique has been extended to Stipula where time expres-
sions have a further complexity: the presence of names whose values are unknown when the contract
is drawn (their values will be determined upon the agreement between parties). To cope with this fea-
ture, we consider logical times with expressions on field names and the analyzer returns constraints that
guarantee reachability. In this last case, the analyzer takes advantage of the (additive) format of Stipula
time expressions to simplify and partially evaluate the constraints in order to obtain more intelligible
(unreachability) messages. The reachability analyzer has been prototyped for the (full) Stipula language.
The prototype, with all the code samples discussed in this paper (and many others), is available at [12].

The paper is organized as follows. Section 2 gives a light introduction to Stipula and to the reacha-
bility analyzer through a bunch of simple examples. The syntax and semantics of µStipula are defined
in Section 3, while the theory underneath the analyzer is developed in Section 4. Section 5 covers the
analysis of features of Stipula that are not in µStipula. We report the related literature in Section 6 and
conclude in Section 7. Because of page constraints, the demonstrations of main statements have been
moved to the appendix that will be removed from the extended abstract.

2 µStipula and the reachability analyzer

Let us introduce µStipula with a simple contract, the PingPong:

1 stipula PingPong {

2 init StartM

3 @StartM Mary:ping ()[] {

4 now + 1 >> @Go { } => @StartB

5 } => @Go

6 @StartB Bob:pong ()[] {

7 now + 2 >> @Cont { } => @StartM

8 } => @Cont

9 }

The contract follows a state-machine programming style for modelling the normative elements regulating
the interactions between parties. In this case there are two parties, Mary and Bob. In the initial state
StartM, once Mary invokes the function ping, the contract transits to the state Go where the unique
possibility is the execution of the event at line 4. The expression now + 1 indicates that this clause
can be executed after 1 minute (one clock tick must elapse). Then the state becomes StartB indicating
that pong may be invoked by Bob, thus letting the contract transit to Cont. In Cont, after 2 minutes
(the expression now + 2), the event at line 7 can be executed and the contract returns to StartM. In
PingPong, every clause is reachable; in fact the analyzer returns
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1 stipula SampleTime {

2 init Init

3 @Init A:f()[] {

4 now + 1 >> @Cont { } => @Run

5 now + 2 >> @Comp { } => @End

6 } => @Cont

7
8 @Run B:g()[] {

9 now + 2 >> @Go { } => @Comp

10 } => @Go

11 }

1 stipula Ugly {

2 init Q0

3 @Q0 A: f()[] {

4 now + 1 >> @Q3 {} => @Q4

5 now + 2 >> @Q2 {} => @Q3

6 } => @Q1

7 @Q1 B: g()[] {

8 now + 1 >> @Q1 {} => @Q2

9 } => @Q0

10 @Q4 C: h()[] { } => @Q5

11 }

Figure 1: The contracts SampleTime and Ugly

"unreachable_code ": []

Next, let us consider the contract Sample:

1 stipula Sample {

2 init Init

3 @Init A:f()[] {

4 now + 5 >> @Go { } => @End

5 } => @Run

6 @Init B:g()[] { } => @Go

7 }

This contract has the two functions at lines 3 and 6, noted A.f and B.g, respectively, that may be invoked
in Init. We observe that the invocation of one of them excludes the other because of their final states.
Therefore the event in line 4 is unreachable since it can run only if B.g is executed (because the final state
of B.g matches with the initial state of the event). Therefore the analyzer returns:

"unreachable_code ": [ Go ev.4 End ] .

The difficult cases are those where unreachability is due to time expressions that are incompatible.
Consider SampleTime in Figure 1. This contract has an unreachable event: the one at line 5. To explain
this, let us discuss the flow of execution by computing the times of the clauses. Let the time of A.f be
ζA.f; therefore the times of ev.4 and ev.5 are ζA.f+1 and ζA.f+2, respectively. Because of the matching
final state/initial state, the clause that is executed after A.f is ev.4 and then B.g. Therefore B.g may start
at ζA.f + ζB.g + 1 and ev.9 may be triggered at ζA.f + ζB.g + 3. Since the final state of ev.9 matches
with the initial state of ev.5, we derive the constraint on time expressions ζA.f+ζB.g+3≤ ζA.f+2. This
constraint is clearly unsolvable because all the time variables must be nonnegative. Said otherwise, when
ev.5 might be executed, the time is already elapsed. Hence the analyzer gives

"unreachable_code ": [ Comp ev.5 End ] .

The above arguments may lead to wrong conclusions when contracts have cycles. For example, in the
contract Ugly, the ev.4 seems unreachable because it is caused by ev.5 that happens at a later time (as a
consequence C.h is unreachable, as well). In fact, we derive the constraint ζA.f+ζB.g+3≤ ζA.f+ζB.g+2,
which is unsolvable. However, consider the following flow of execution assuming that the contract starts
at time 0. The first clause that is executed is A.f, which creates ev.4 to be executed at time 1 (we note
it ev.41) and ev.5 to be executed at time 2 (we note it ev.52). A.f ends in Q1 and the next clause that
can be executed is B.g, still at time 0. B.g creates ev.8 to be executed at 1 and the state go back to Q0.
Now there is the critical moment: a tick occurs and A.f is executed again at time 1. A.f creates ev.4 to
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stipula C { init Q F }

Functions F ::= -- | @Q A:f()[]{W } => @Q′ F
Events W ::= -- | t >> @Q{} => @Q′ W
Time expressions t ::= now+κ (κ ∈ Nat)

Figure 2: Syntax of µStipula

be executed at time 2 (we note it ev.42) and ev.5 to be executed at time 3 (we note it ev.53). Then we
can execute ev.8, a tick, ev.52, ev.42 and C.h. That is, C.h is reached by events created in two different
invocations of A. f . Hence, every clause of Ugly is reachable. Therefore, when a function is cyclic, we
have decided to drop the time analysis and to deem “reachable” its events if they are so with arguments
that do not take into account time expressions.

3 The syntax and semantics of µStipula

A legal contract is written in µStipula according to the syntax of Figure 2, where C is the name of the
contract. Contracts have

• a set of parties, ranged over A, B, A′, · · · , which are the entities involved in the contract;

• a set of states, ranged over Q, Q′, · · · ; the initial state is defined by the init expression;

• a sequence F of functions f, g, · · · .

A µStipula contract may transit from one state to another either by invoking a function or by running
an event. Functions are invoked by a party and define the state when the invocation is admitted.

Events W are sequences of timed continuations that schedule some code for future execution. More
precisely, the term t>>@Q{} => @Q′ schedules an execution that is triggered at a time that is the value
of t. When triggered, if the contract’s state is Q, a transition to Q′ occurs. The time expressions are
additions now+κ , where κ is a natural constant (representing minutes); now is a place-holder that will
be replaced by the current global time during the execution, see rule [STATE-CHANGE] in Figure 3. We
always shorten now+0 into now.

Restriction and notations. We assume that a function is uniquely determined by the tuple Q A.f Q′,
that is the initial and final states, the party that can invoke the function and the function name. Similarly,
an event is uniquely determined by the tuple Q ev.n Q′, where n is the line-code of the event. We use H.c
to range over A.f and ev.n and tuples Q H.c Q′ are called clauses.

With an abuse of notation, the contract code is addressed by using the contract name and we write
Q A.f Q′ ∈ C if the code @Q A:f()[]{W } => @Q′ is in the contract C (also noted @Q A:f()[]{W } => @Q′ ∈
C). We also write Q1 ev.n Q2 ∈ Q A.f Q′ if there is an event t>>@Q1 {} => @Q2 in the function @Q A:f()[]{
W } => @Q′ that starts at line-code n. In this case we also write Q1 ev.n Q2 ∈ C.

3.1 The operational semantics

The meaning of µStipula primitives is defined operationally by means of a transition relation. Let
C(Q , Σ , Ψ) be a tuple where

• C is the contract name;
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[FUNCTION]

@QA:f()[]{W }=>@Q′ ∈ C W ′ = LCQ A.f Q′(W )
Ψ,t 9

C(Q , -- , Ψ),t
A.f−→ C(Q ,W ′ =>Q′ , Ψ),t

[STATE-CHANGE]

W =
(
ti >>ni@Qi {}=>@Q′i

)i∈1..h (
ti = ti{t/now}

)i∈1..h

Ψ′ = t1 >>n1Q1 {}=>Q′1 | · · · | th >>nhQh {}=>Q′h
C(Q ,W =>Q′ , Ψ),t−→ C(Q′ , -- , Ψ′ | Ψ),t

[EVENT-MATCH]

Ψ = t>>n Q { }=>Q′ | Ψ′

C(Q , -- , Ψ),t
ev.n−→ C(Q , --=>Q

′ , Ψ′),t

[TICK]

Ψ,t 9
C(Q , -- , Ψ),t−→ C(Q , -- , Ψ),t+1

Figure 3: The operational semantics of µStipula

• Q is the current state of the contract;

• Σ is either -- or a term W =>Q;

• Ψ is a (possibly empty) multiset of pending events that have been already scheduled for future
execution but not yet triggered. In particular, Ψ is either --, when there are no pending events, or it
is W1 | · · · |Wn where each Wi = ti>>ni Qi {}=>Q′i. The time guard ti is the absolute time: it is the
evaluation of the time expression ti of the event when now is replaced by the value of the global
clock (se below and rule [STATE-CHANGE]). The index ni is the line-code of the event; it is set by
the function LCQ A.f Q′(W ) (see rule [FUNCTION], the definition is omitted).

Tuples C(Q , Σ , Ψ) are ranged over by C, C′, · · · . A configuration is a pair C,t, where t is the time value
of the system’s global clock. The transition relation of µStipula is C,t

µ−→ C′,t′, where µ is either
empty or A.f or ev.n (the label ev.n indicates the event at line n; it has been added in this paper for
easing the arguments in Section 4). The formal definition of C,t

µ−→ C′,t′ is given in Figure 3 using
the following auxiliary predicate:

• the predicate Ψ,t9 is true whenever Ψ = t1>>n1Q1{}=>Q′1 | · · · | tk >>nk Qk{}=>Q′k and, for every
1≤ i≤ k, ti 6= t; false otherwise.

A discussion about the four rules follows. Rule [FUNCTION] defines invocations: the label specifies
the party A performing the invocation and the function name f. The transition may occur provided (i) the
contract is in the state Q that admits invocations of f from A and (ii) no event can be triggered – cf. the
premise Ψ,t 9 (event’s execution preempts function invocation). Rule [STATE-CHANGE] says that a
contract changes state by adding the sequence of events W to the multiset of pending events once their
time expressions have been evaluated (now is replaced by the current value of the clock). Rule [EVENT-
MATCH] specifies that an event handler may run provided Σ is -- and the time guard of the event has
exactly the value of the global clock t, which is evaluated when the event is scheduled – cf. rule [STATE

CHANGE]. Rule [TICK] defines the elapsing of time. This happens when the contract has an empty Σ and
no event can be triggered. It is worth to observe that µStipula has three causes for nondeterminism: (i)
two functions can be invoked in a state, (ii) either a function may be invoked or the time may elapse (in
this case the function may be invoked at a later time), and (iii) two events may be invoked at the same
time and in the same state.

The initial configuration of a µStipula contract

stipula C { init Q F }
is C(Q , -- , --),t, where t can be any value because it corresponds to the absolute time. We write C,t−→∗

C′,t′, called computation, if there are µ1, · · · ,µk such that C,t
µ1−→ ·· · µk−→ C′,t′.
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Definition 1 Let C be a µStipula contract with initial configuration C,t and let

C,t−→∗ µ−→ C(Q ,W =>Q′ , Ψ),t′ .

If µ = A.f then we say that the function Q A.f Q′ ∈ C is reachable (from C,t); if µ = ev.n then we say
that the event Q ev.n Q′ is reachable (from C,t; in this case W = --).

We remark that, according to Definition 1, the reachability predicate uses an existential quantification
on computations. The notion of underlying clause of a transition will be often used in the following
sections:

• the underlying clause of C(Q , -- , Ψ),t
A.f−→ C(Q ,W =>Q′ , Ψ),t is Q A.f Q′; the underlying clause

of C(Q , -- , Ψ),t
ev.n−→ C(Q , --=>Q

′ , Ψ),t is Q ev.n Q′.

4 The theory of the reachability analyzer

We use sequences of clauses without repetitions Q1 H1.c1 Q
′
1 ; · · · ; Qn Hn.cn Q

′
n. These sequences, ranged

over by A, A′, · · · , are called abstract computations because they represents the (sequence of) clauses used
in computations of a µStipula contract. The notion is quite rude: while every computation in µStipula
has a corresponding abstract computation (see Theorem 1), there are abstract computations that do not
correspond to any computation. For example, in the contract Sample, the sequence containing all the
clauses does not correspond to any computation. The purpose of this section is to restrict the set of
abstract computations by dropping those containing unreachable clauses.

We will use the following auxiliary operations and notions:

• Q H.c Q′ ∈ A if there is an element of A that is equal to Q H.c Q′;

• let A be a set of clauses. Then

A|A
def
=


∅ if A = ε

A′|A if A = A′ ; Q H.c Q′ and Q H.c Q′ /∈A

A′|A ∪{Q H.c Q′} if A = A′ ; Q H.c Q′ and Q H.c Q′ ∈A

A / Q H.c Q′
def
=

{
A ; Q H.c Q′ if Q H.c Q′ /∈ A

A if Q H.c Q′ ∈ A

We also write {A1, · · · ,An} / Q H.c Q′
def
= {A1 / Q H.c Q

′, · · · ,An / Q H.c Q
′}.

• let R′ and R′′ be two maps from clauses to sets of abstract computations. We define R′ ≤ R′′ if, for
every Q, R′(Q H.c Q′)⊆ R′′(Q H.c Q′). It turns out that the domain of maps with the partial order ≤
is a lattice [11] and this lattice, given a contract, is always finite.

In the following notations, in order to have a lighter notation, we always omit the reference to the
contract C.

Definition 2 Let C be a µStipula contract with initial state Q. The sequence of maps RQ
(0), RQ

(1), · · ·
that take clauses in C and return sets of abstract computations is defined as follows:

1. RQ
(0)(Q1 H.c Q2) =

{
{ Q1 H.c Q2 } if Q= Q1 and H.c= A.f and Q A.f Q2 ∈ C

∅ otherwise
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2. RQ
(i+1)(Q1 A.f Q2) = RQ

(i)(Q1 A.f Q2) ∪
(⋃

Q3 H′.c′ Q1∈C {A / Q1 A.f Q2 | A ∈ RQ
(i)(Q3 H

′.c′ Q1)}
)

3. if Q1 ev.n Q2 ∈ Q′ A.f Q′′, then

RQ
(i+1)(Q1 ev.n Q2) = RQ

(i)(Q1 ev.n Q2)

∪
(⋃

Q3 H′.c′ Q1∈C{A / Q1 ev.n Q2 | A ∈ RQ
(i)(Q3 H

′.c′ Q1) and Q′ A.f Q′′ ∈ A}
)

By definition RQ
(i) ≤ RQ

(i+1). Since the set of possible functions from clauses to sets of abstract compu-
tations is a finite lattice, there exists k such that RQ

(k) = RQ
(k+1) [11]. Let RQ be such fixpoint.

The map RQ takes a clause Q′ H.c Q′′ and returns the set of abstract computations starting at the initial
state Q and ending at Q′ H.c Q′′. Notice that every set A ∈ RQ(Q

′ H.c Q′′) owns a consistency property
(cf. the item 2 of Definition 2): if an event is in A then the function that contains it is also in A.

The clauses that will be deemed “unreachable” (from Q) are those such that RQ(Q
′ H.c Q′′) = ∅. In

particular, RQ allows us to discard

• those clauses such that there is no path in the control flow graph of C (the finite automaton whose
states are the contract’s states and transitions Q′ H.c−→ Q′′ are the functions and events Q′ H.c Q′′) from
Q to them;

• and those events such that every path in the control flow graph from Q to them has no transition
labelled with the function containing the event.

For example, in Sample:

RInit(Init A.f Run) = {Init A.f Run} RInit(Init B.g Go) = {Init B.g Go} RInit(Go ev.4 End) = ∅

The reader is encouraged to verify that, in SampleTime,

RInit(Comp ev.5 End) = {Init A.f Cont ; Cont ev.4 Run ; Run B.g Go ; Go ev.9 Comp ; Comp ev.5 End}

therefore RInit(Comp ev.5 End) 6=∅, which means that Comp ev.5 End is reachable according to RInit.

Definition 3 Let C be a µStipula contract with initial configuration C,t. The underlying abstract com-
putation of C,t

µ1−→ ·· · µn−→ C′,t′ is the sequence of clauses Q1 H1.c1 Q
′
1 ; · · · ; Qk Hk.ck Q

′
k such that

1. if Q H.c Q′ is the underlying clause of µi then there is j with Q H.c Q′ = Q j H j.c j Q
′
j;

2. for every i, if µi is the first label whose underlying clause is Q j H j.c j Q
′
j then {Q1 H1.c1 Q

′
1, · · · ,

Q j1 H j−1.c j−1 Q
′
j−1} is the set of underlying clauses of µ1, · · · ,µi−1.

Theorem 1 (Correctness of RQ) Let C be a µStipula contract with initial state Q and initial configura-
tion C,t. Let also

C,t−→∗ C′,t′
µ−→ C′′,t′ (1)

and Q′ H.c Q′′ be the underlying clause of µ . Then there is A ∈ RQ(Q
′ H.c Q′′) that is the underlying

abstract computation of (1). Therefore RQ(Q
′ H.c Q′′) 6=∅.
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We use RQ to define the cyclic behaviours of contract functions. This predicate will be relevant in the
following because we spot timed-out events when the corresponding functions are acyclic.

Definition 4 Let C be a µStipula contract with initial state Q. Let

CyclicQ(Q1 A.f Q2) =


true if A ; Q1 A.f Q2 ; A′ ∈ RQ(Q1 A.f Q2) and Q′1 H.c Q

′′
1 ∈ A ; Q1 A.f Q2

and Q′2 H
′.c′ Q′′2 ∈ Q1 A.f Q2 ; A′ with Q′′2 = Q′1

false otherwise

(CyclicQ is undefined on events.)

The predicate CyclicQ uses the property that, in abstract computations of RQ(Q1 A.f Q2), clauses are added
to the right of the sequences (if they are not already present). Therefore, if in the final states “on the right”
of Q1 A.f Q2 (also including Q2) there is a state that occurs as initial in some clause “on the left” (also
including Q1) then the function is deemed cyclic. The predicate has not been defined on events because
they are cyclic provided the corresponding function is. An immediate consequence of Theorem 1 is the
correctness of CyclicQ.

Corollary 1 Let C be a µStipula contract with initial state Q and initial configuration C,t. Let also

C,t−→∗ µ−→−→∗ µ ′−→−→∗ C′,t′

such that the underlying clause of µ and µ ′ is Q1 A.f Q2. Then CyclicQ(Q1 A.f Q2) = true.

The converse of Corollary 1 is false: since CyclicQ is over-approximating, it is possible that CyclicQ(Q1 A.f Q2)=
true and there is no computation manifesting the corresponding cyclic behaviour (see Remark ??).

4.1 Removing timed-out events

The map RQ does not parse time expressions; for this reason, in SampleTime, Comp ev.5 End is deemed
reachable. The following refinement of RQ addresses time expressions and allows us to drop those events
(and their continuations) whose time expressions are inconsistent with the contract behaviour.

Assessing consistency of time expressions at static time is complex because it is not possible to relay
on the notion of computation (which are infinitely many) and on the absolute time t (which is a runtime
concept). To overcome these issues, we use abstract computations as surrogates of computations and
logical times as surrogates of absolute times. Logical times are terms that are defined by assigning a
time variable to functions and a time variable plus a delta to events (the time variable is the logical
time of the function containing the event, the delta is a natural number corresponding to the value of
the time expression of the event). The time variable represents the (absolute) time when a function
is invoked: it is a variable because its value is unknown statically. However, the critical point is the
presence of cyclic behaviours (cf. the discussion about the contract Ugly in Section 2) because, in these
cases, several instances of a function are required and it is not possible to associate a unique value
to the corresponding time variable. Since abstract computations and logical times may lead to wrong
conclusions about reachability in presence of cycles, we have decided to restrict the refinement of RQ to
acyclic functions. We begin with the definition of logical time and with two auxiliary functions:

• the logical time is a term of the form ζ1+ · · ·+ζh+k, where ζi are variables representing the times
when functions are invoked and k is a constant in Nat;

• EVC(Q A.f Q
′)

def
= { Q1 ev.n Q2 | Q1 ev.n Q2 ∈ Q A.f Q′ }
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• TEC(∪i∈1..m{Qi ev.ni Q
′
i})

def
= {κi | i ∈ 1..m and now+κi>>ni@Qi{}=>@Q′i ∈ C}.

Definition 5 Let C be a µStipula contract and ν be an injctive mapping from functions Q A.f Q′ ∈ C to
variables. Let

• Θν be the function from abstract computations to logical times defined as follows:

Θν(A)
def
=


Θν(A′)+ν(Q A.f Q′) if A = A′ ; Q A.f Q′

Θν(A′)+ ν(Q A.f Q′)+κ if A = A′ ; Q A.f Q′ ; A′′ ; Q1 ev.n Q2 and Q1 ev.n Q2 ∈ Q A.f Q′

and κ = max
(
TEC(A′′ ; Q1 ev.n Q2|EVC(Q A.f Q′))

)
• Tν , called time function, be the following function from sets of abstract computations to sets of

logical times:
Tν({A1, · · · ,An})

def
= {Θν(A1), · · · ,Θν(An) }

For example, in SampleTime (we use RInit(·) to specify sets of abstract computations; in this case,
these sets are singletons):

Tν(RInit(Init A.f Cont)) = {ζA.f} Tν(RInit(Cont ev.4 Run)) = {ζA.f+1}

Tν(RInit(Run B.g Go)) = {ζA.f+ζB.g+1} Tν(RInit(Go ev.9 Comp)) = {ζA.f+ζB.g+3}

Definition 6 Let T and T ′ be two sets of logical times. We say that T ≤ T ′ is solvable if there are t ∈ T ,
t ′ ∈ T ′ and a ground substitution σ , such that tσ ≤ t ′σ (σ maps variables to naturals). Otherwise we
say that T ≤ T ′ is unsolvable.

For example {x+y+1}≤ {x+2} is solvable (replacing y with either 0 or 1), while {x+y+1}≤ {x+y}
is not solvable. The next key lemma guarantees that the logical times of clauses are sound with respect
to computations.

Everything is now in place for the definition of R+Q ; the definition and its correctness conclude the
section.

Definition 7 Let C be a µStipula contract with initial state Q and let ν be an injctive mapping from
functions Q A.f Q′ ∈ C to variables. The sequence of maps R+Q

(0)
, R+Q

(1)
, · · · is defined as follows:

1. R+Q
(0)
(Q1 H.c Q2) =

{ { Q1 H.c Q2 } if Q= Q1 and H.c= A.f and Q A.f Q2 ∈ C

∅ otherwise

2. R+Q
(i+1)

(Q1 A.f Q2) = RQ
(i)(Q1 A.f Q2) ∪

(⋃
Q3 H′.c′ Q1∈C

{
A / Q1 A.f Q2 | A ∈ R+Q

(i)
(Q3 H

′.c′ Q1)
})

3. if Q1 ev.n Q2 ∈ Q′ A.f Q′′ and CyclicC(Q
′ A.f Q′′) = true, then

R+Q
(i+1)

(Q1 ev.n Q2) = R+Q
(i)
(Q1 ev.n Q2)

∪
(⋃

Q3 H′.c′ Q1∈C
{

A / Q′ ev.n Q′′ | A ∈ R+Q
(i)
(Q3 H

′.c′ Q1) and Q′ A.f Q′′ ∈ A
})

4. if Q1 ev.n Q2 ∈ Q′ A.f Q′′ and CyclicC(Q
′ A.f Q′′) = false, then

R+Q
(i+1)

(Q1 ev.n Q2) =

R+Q
(i)
(Q1 ev.n Q2)

∪
(⋃

Q3 H′.c′ Q1∈C
{

A / Q1 ev.n Q2 | A ∈ R+Q
(i)
(Q3 H

′.c′ Q1) and Q′ A.f Q′′ ∈ A

and Tν({A})≤ Tν(R+Q
(i)
(Q′ A.f Q′′) / Q1 ev.n Q2) is solvable

})
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By definition R+Q
(i) ⊆ R+Q

(i+1)
. Since the maps from clauses to sets of abstract computations of a contract

C is a finite lattice, there exists κ such that R+Q
(κ)

= R+Q
(κ+1)

[11]. Let R+Q be such fixpoint.

The definition of R+Q is clearly a refinement of RQ, adding more constraints in case of events now+
κ >>n@Q1{S}=>@Q2 that do not belong to cyclic functions. In particular, in these cases, we must verify
that there is an abstract computation A leading to Q1 ev.n Q2 (without the event) such that its logical time
is smaller or equal to that of some abstract computations of Q′ A.f Q′′ (the function containing the event)
plus the value κ . In case the constraint is not solvable and the abstract computation is not added. For
example, in SampleTime where every function is not cyclic, R+Init(Comp ev.5 End) =∅ because

• R+Init(Go ev.9 Comp) = { Init A.f Cont, Cont ev.4 Run, Run B.g Go, Go ev.9 Comp };

• then Tν(R+Init(Go ev.9 Comp)) = ζA.f+ζB.g+3 and Tν(R+Init(Init A.f Cont) / Comp ev.5 End) =
ζA.f+2;

• and there is no ground substitution such that ζA.f+ζB.g+3≤ ζA.f+2.

Theorem 2 (Correctness of R+Q ) Let C be a µStipula contract with initial state Q and initial configura-
tion C,t. Let also

C,t−→∗ C′,t′
µ−→ C′′,t′ (2)

and Q′ H.c Q′′ be the underlying clause of µ . Then there is A ∈ R+Q (Q
′ H.c Q′′) that is the underlying

abstract computation of (2). Therefore R+Q (Q
′ H.c Q′′) 6=∅.

5 Extensions

The language µStipula of Section 3 is a micro subset of Stipula [9]. In the full language, contracts also
define fields and assets, functions have arguments that may be assets (in the notation, the curved bracket
group standard arguments, the square brackets group assets) and bodies may also contain statements that
can update fields and move assets. While these features do not affect the analysis of reachability, there
are others that have a relevant effect. In particular, Stipula contracts have the agreement clause that may
initialize fields occurring in (more expressive) time expressions. The reachability analyzer also covers
these features and, in this section, we discuss the upgrade of the technique of Section 4.

Agreements and time expressions with names. Stipula time expressions also contain names, i.e.

t ::= now | t+κ | t+x

where these x are fields of the contract. The theory of reachability remains the same when these fields
are initialized at the beginning (cf. the init clause) and their value never changes. However, Stipula
contract may be drawn with values of fields left unspecified and the values of fields (as well as the actual
instances of parties’ names) are specified in the agreement clause that is performed when the contract
is executed. This means that fields are undefined when the contract is drawn up (in particular those
occurring in time expressions). For example, in the code

1 stipula Agree {

2 fields x,y

3 agreement(A,B)(x,y) { A,B : x,y } => @Init

4 @Init A: f()[] {

5 now + x >> @Run {} => @Comp
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6 } => @Cont

7 @Cont B: g()[] {

8 now + y >> @Comp {} => @End

9 } => @Run

10 }

the agreement clause defines the parties (A and B) that are involved in the contract and the fields’ values
(x and y) they are required to agree upon (notice that the init clause is now part of the agreement). It is
expected that, when the functions will be invoked, the fields x and y have been already initialized.

To cover these situations, which are very common in practice, the analyzer also deals with symbolic
names and with constraints over them. This is not simple and we discuss our solution below.

Without loss of generality, we assume that no field occurring in time expressions has been initialized.
We use an alternative form of the function Θν in Section 4. The new function, noted Θ fd

ν (the superscript
fd stands for field names), returns sets T of terms ζA1.f1 + · · ·+ ζAm.fm + κ1× x1 + · · ·+ κh× xh + κ ,
where ζA1.f1 + · · ·+ ζAm.fm is a logical time, x1, · · · ,xh are fields of the contract and κ1, · · · ,κh,κ ∈ Nat.
We also redefine TEC and Tν . Let C be a Stipula contract; then

• TE fd
C (
⋃

i∈1..m({Qi ev.ni Q
′
i})

def
= {ti | i ∈ 1..m and now+ ti>>ni@Qi{}=>@Q′i ∈ C};

• Θ fd
ν be the following function from abstract computations to logical times:

Θ
fd
ν (A)

def
=


Θ fd

ν (A′)+ν(Q A.f Q′) if A = A′ ; Q A.f Q′⋃
t∈T

(
Θ fd

ν (A′)+ ν(Q A.f Q′)+ t
)

if A = A′ ; Q A.f Q′ ; A′′ ; Q1 ev.n Q2 and Q1 ev.n Q2 ∈ Q A.f Q′

and T = TE fd
C (A′′ ; Q1 ev.n Q2|EVC(Q A.f Q′))

• T fd
ν be the following function from sets of abstract computations to sets of logical times:

T fd
ν ({A1, · · · ,An})

def
=
⋃

i∈1..n Θ fd
ν (Ai)

Using the foregoing functions, the analyzer computes R+Q , by gathering constraints between fields. For
example, if T fd

ν (R+Q0
(Q H.c Q′)) = {t1, t2} and T fd

ν (R+Q0
(Q′ H′.c′ Q′′)) = {t ′1, t ′2} then the analyzer highlights

the four constraints t1 ≤ t ′1, t1 ≤ t ′2, t2 ≤ t ′1, t2 ≤ t ′2 in the returned message. For instance, in the contract
Agree, T fd

ν (R+Init(Run ev.5 Comp))= {ζA.f+ζB.g+1×x+0×y+0} and T fd
ν (R+Init(Comp ev.8 End))=

{ζA.f+ ζB.g+0×x+1×y+0}. Therefore in order to have a larger R+Init we need that x ≤ y. In fact,
the tool returns

"reachability constraint ": [ x <= y ] .

Of course, the precision of the reachability analyzer may be augmented if it is also run after the agree-
ment, once the fields’ values are known (henceforth we are back to the basic theory). We are considering
to extend the Stipula toolchain with this additional feature.

A full-fledged set of time expressions. Stipula time expressions are more generic than those in Sec-
tion 3. In particular, the full syntax of t in Stipula is

t ::= now | date | x | t + x | t + κ('Y' | 'M' | 'D' | 'h' | 'm')?

where date has the format "year-month-day". When t is x, it is intended that x stores a date and, for
instance, t+ 5M means “add 5 months to t” (Y, D, h and m stand for years, days, hours and minutes,
respectively); when we write t+5, as in the whole paper, it is intended t+5m.
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The reachability analyzer covers these generic time-expressions by means of a preprocessor that
transforms the above time expressions into those in the restricted syntax of Section 3. We discuss the
case of an event date>>@Q {S} =>@Q′ in a function Q1 A.f Q2, the other cases are similar. In this case, the
preprocessor (i) replaces every date with an expression now+ x, where x is added to the fields, and (ii)
returns a warning message if the computer clock is greater than date. Then the analyzer computes T fd

ν

considering all these new fields x. The set of returned constraints are then extended with those of the
form t + x= date, for every t ∈ T fd

ν (R+Q0
(Q1 A.f Q2)). For instance, if the code

1 stipula OutofTime {

2 init Init

3 @Init A:f()[] {

4 "2024 -01 -01" >> @Cont { } => @End

5 } => @Cont

6 }

is executed today, the analyzer (actually the preprocessor) returns the warning "expired code":

[ Cont ev.5 End ] . We notice that this warning is returned when the variables in time expressions
are initialized either in the agreement or in the field clause. Otherwise, no warning or a “reachability
constraint” message is returned.

6 Related works

Reachability analysis is a very common optimization in compiler construction that uses data-flow anal-
ysis over the control flow graph of programs [1, 5]. In turn, this data-flow analysis employs fixpoint
techniques to pinpoint parts of codes that cannot be reached. In our case, the control flow graph is
the state-transition system of a Stipula contract and the fixpoint techniques (in the data-flow analysis)
use dependencies event-function and perform the symbolic executions to derive logical times of clauses
that might spot unreachable code units (functions or events). In particular, in our case, the symbolic
executions return a set of constraints on (field) names that are evaluated by the analyzer and used to
signal wrong instances of names. The technique we have followed is similar to the one described in [4].
Currently, our analyzer uses a very basic constraint solver that performs partial evaluations taking advan-
tage of the additive format of time expressions in Stipula. Integrating the analyzer with an off-the-shelf
constraint solver is in the to-do list of the prototype development.

Another technique that is used for reachability analysis is model checking. It undertakes a systematic
exploration of the computations to verify a temporal logic formula expressing a reachability property
([15] and [7] are two well-known tools, the latter uses a symbolic technique to reduce the state explosion
problem). While model checking is good at catching difficult corner cases, it is critical because of the
state space, which may be infinite in Stipula (even if the control flow graph is finite). In particular,
time expressions may generate very subtle reachability dependencies (cf. the Ugly contract) that require
several instances of a function. At the time of writing, it is unclear whether there is a relationship
between the number of instances of functions and the time expressions of a contract that might bound
the reachability analysis.

The standard reference model of systems with clocks is timed automata [3]. As regards reachability
analysis, one can think to define a compilation pattern from µStipula contracts to timed automata with
one clock and without the reset operation. Henceforth, the reachability analysis of a µStipula is reduced
to the reachability problem of this subclass of timed automata that has been proved to be NLogSpace-
complete [18]. Actually we started our research by defining a compilation pattern in timed automata
without obtaining valuable results. Let us discuss it briefly. The compilation gives automata whose
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• states are contract states plus the events that have been produced and are live (timed-out events are
garbage-collected);

• transitions are labelled with clauses and with a constraint on the time; we do not consider transi-
tions to states that differ for the value of the clock.

For example, in the case of the contract Ugly, part of the corresponding timed automata is (we assume
to start with the clock equal to 0)

Q0 
-

Q1 
ev.4 at 1 
ev.5 at 2

A.f, t = 0

B.g, t = 1

B.g, t > 2

Q0 
ev.4 at 1 
ev.5 at 2 
ev.8 at 1

B.g, t = 0

. . . . . .

A.f, t = 0

. . .

Q0 
ev.4 at 1 
ev.5 at 2 
ev.8 at 2

B.g, t = 1
A.f, t = 1

. . .
A.f, t = 2

. . .
A.f, t > 2

. . .

Q0 
ev.5 at 2 
ev.8 at 2

B.g, t = 2

Q1 
ev.5 at 2 
ev.8 at 2 
ev.4 at 3 
ev.5 at 4

A.f, t = 2

Q2 
ev.5 at 2 
ev.4 at 3 
ev.5 at 4

ev.8, t = 2

Q3 
ev.4 at 3 
ev.5 at 4

ev.5, t = 2

Q4 
ev.5 at 4

ev.4, t = 3

C.h, t > 3

. . .

B.g, t = 1

. . .
B.g, t = 2
. . .

. . .
B.g, t = 3. . .

B.g, t = 4

As a pros, the above automata shows that Q4 C.h Q5 is reachable. The downside is that there is an
explosion of states because of the value of the clock and the events that are via via collected (one might
stick to timed automata with the reset operation but the situation does not change in a sensible way). Even
more worse, we have no clear clue to stop the generation of states (the current one stops the generation
when either every clause has been generated or path lengths reach a given upper bound). To this respect
we observe that the above technique is not different from model checking the µStipula automata up-to
a given length of computations. Finally, the compilation in timed automata do not seem to support the
extension with variables discussed in Section 5 and the corresponding generation of constraints. Because
of these remarks, we decided to develop the theory that has been presented in this paper.

Finally, reachability has also been demonstrated to be decidable for a large class of transition sys-
tems – the well-structured ones [13]. However, our attempts to prove that the µStipula transition sys-
tem matches with the well-structured constraints have failed. It turns out that the expressive power of
µStipula is an open problem: apparently, the combination of automata, time, and function invocations is
a novel matter.

7 Conclusions

We have studied the reachability of clauses in legal contracts written in Stipula, a formal language with
a precise syntax and semantics. This problem is knotty because clauses may be triggered by time con-
straints that must be partially evaluated. We have defined an algorithm, demonstrated its correctness and
prototyped it.

The current prototype is a trade-off between coverage of cases and complexity of the theory. We
have already observed that the precision of the analyzer is reduced in presence of cyclic functions. There
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are also two other sources of imprecision that we have noticed. µStipula semantics gives precedence to
events when, in a configuration, both functions can be invoked and events can be performed. This means
that in the contract UglyNow

1 stipula UglyNow {

2 init Q0

3 @Q0 A: f()[] {

4 now >> @Q1 {} => @Q2

5 } => @Q1

6 @Q1 B: g()[] {

7 } => @Q3

8 }

1 stipula TwoEvents {

2 init Q0

3 @Q0 A: f()[] {

4 now + 1 >> @Q1 { } => @Q3

5 now + 2 >> @Q1 { } => @Q2

6 } => @Q1

7 @Q2 B: g()[] { } => @Q3

8 }

B.g is unreachable and the analyzer does not spot it. The imprecision of UglyNow may be easily rec-
ognized because it only appears in contracts that have a time expression now (the fix has not been im-
plemented in order to avoid a distinguo that further entangle the theory). In another case, fixing the
imprecision is more difficult. Consider the contract TwoEvents; there, ev.4 and ev.5 start in the same
state at two different times. It turns out that ev.5 starting at a later time (and its continuation B.g) will be
unreachable and not detected by the analyzer. While this case is easy to spot, the general one where the
competing events might belong to different functions or even to different instances of the same function
is difficult. A more precise analysis should require to record the events that do not occur in the abstract
computation and that compete with each other. The definition of R+Q should also use this additional set to
reduce the imprecision. All these precision issues are relevant research problems that are already in our
agenda. However, it is worth to remark that the pattern on the left never showed up in the (more than 30
real) legal contracts we have encoded in Stipula, while we found only once the pattern on the right (the
Bakery contract in the repository [12]).

As we said in Section 6, using a constraint solver to obtain more accurate outputs (such as messages
about unreachability because constraints are unsolvable) is also in our to-do list. There is an additional
reason for using constraint solvers, which is related to a last feature of Stipula that has not been covered
in this paper. The complete format of a Stipula function is @Q A:f(y)[k] (E ){S W } => @Q′, with the
meaning that, when the function is invoked, the body can be executed provided the condition E holds.
That is, if E is always false, the function is never executed and becomes unreachable. Since E may
contain field names, asset names and formal parameters of the function, understanding whether every
computation ending at Q has E unsolvable is pretty difficult.

We are aware of two techniques that might be considered. One is dynamic symbolic execution [2]
that combines symbolic execution with the collection of constraints on paths and the analysis by means
of a solver. here, the criticality is to gather all the possible computations; perhaps a saturation technique
using some (approximation of the) fixpoint might be helpful. Another technique is to encode the oper-
ational semantics of Stipula contracts into the formal model of Abstract State Machines and then uses
the corresponding tools for verifying reachability [6]. In this case, while the encoding in Abstract State
Machines should be feasible, covering all the possible executions might require over-approximations that
threaten the precision of the technique. The detailed study of this solution is under current investigation.

Acknowledgements. I thank Samuele Evangelisti and Alessandro Parenti for the long discussions we
had about the reachability analysis. In particular Samuele, which developed the prototype [12] in his
master thesis, has been very patient in rewriting the algorithm several times while I developed the theory
and very accurate in spotting errors. Alessandro has triggered this research by underlying the relevance
of finding errors in legal contracts when they are drawn.
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A Technical material

The appendix contains the technical material that has not been included in the paper for length con-
straints. To ease the reading, we report the proof with the corresponding statements.

We begin with the correctness of the map RQ.

Theorem 1 (Correctness of RQ) Let C be a µStipula contract with initial state Q and initial configuration
C(Q , -- , --),t. Let also

C,t−→∗ C′,t′
µ−→C′′,t′ (1)

and Q′ H.c Q′′ be the underlying clause of µ . Then there is A ∈ RQ(Q
′ H.c Q′′) that is the underlying

abstract computation of (1). Therefore RQ(Q
′ H.c Q′′) 6=∅.

Proof : Let the computation (1) be C(Q , -- , --),t−→∗ C(Q′ , -- , Ψ),t′
µ−→ C(Q′ , Σ , Ψ),t′. By induc-

tion on the length of C(Q , -- , --),t−→∗ C(Q′ , -- , Ψ),t′.
The basic case (the length is 0) is obvious. Assuming the theorem and the property hold for compu-

tations of length h, we demonstrate them for computations of length h+ 1. Consider the last transition
of C(Q , -- , --),t−→∗ C(Q′ , -- , Ψ),t′ that is an instance either of [FUNCTION] or of [EVENT-MATCH]. Let
Q′′′ H′.c′ Q′ be its underlying clause. By inductive hypotheses, there is A ∈ RQ(Q

′′′ H′.c′ Q′) that is the
underlying abstract computation of C(Q , -- , --),t−→∗ C(Q′ , -- , Ψ),t′.

When µ = A.f, by definition of RQ, A / Q′ A.f Q′′ ∈ RQ(Q
′ A.f Q′′).

When µ = ev.n, let Q′ ev.n Q′′ ∈ Q′1 A.f Q′2. By the operational semantics, the computation C(Q , -- , --),t

−→∗ C(Q′ , -- , Ψ),t′ must contain a transition C(Q′1 , -- , Ψ1),t1
A.f−→ C(Q′1 , W =>Q′2 , Ψ1),t1 and W =

t′>>nQ′{} =>Q′′ |W ′. Therefore, by the inductive hypotheses, Q′1 A.f Q
′
2 ∈ A. Hence, by definition of RQ,

A / Q′ ev.n Q′′ ∈ RQ(Q
′ ev.n Q′′). �

The proof of Corollary 1is omitted because it is similar to the one of the following Lemma 1.

The correctness of R+Q requires two preliminary statements about acyclic functions. The first one,
Lemma 1, is a property about the format of underlying abstract computations containing acyclic func-
tions. The second one, Lemma 2, is about time expressions of abstract computations containing events
of acyclic functions.

Lemma 1 Let C be a µStipula contract with initial state Q and initial configuration C,t. Let also

C,t−→∗ C1,t1
µ−→ C2,t1 −→∗ C′2,t2 (3)

with Q1 A.f Q2 being the underlying clause of µ and CyclicQ(Q1 A.f Q2) = false. Then the underlying
abstract computation of (3) is A ; Q1 A.f Q2 ; A′ where A and A′ contain the underlying clauses in
C,t−→∗ C1,t1 and in C′1,t1 −→∗ C2,t2, respectively;

As a consequence, no clause in A occurs in A′ and, conversely, no clause in A′ occurs in A.

Proof : Since CyclicQ(Q1 A.f Q2) = false then, by Corollary 1, (3) has a unique transition whose
underlying clause is Q1 A.f Q2. Therefore, the underlying abstract computation of (3), which exists by
Theorem 1, may be written A ; Q1 A.f Q2 ; A′. By definition of underlying abstract computation, A
contains the underlying clauses in C,t−→∗ C1,t1.

We demonstrate that every underlying clause Q′1 H.c Q
′
2 of transitions in C2,t1 −→∗ C′2,t2 does not

occur in A. By contradiction, assume that Q′1 H.c Q′2 ∈ A. Therefore A = A1 ; Q′1 H.c Q′2 ; A2 and the
computation C,t−→∗ C1,t1 may be decomposed as follows:

C,t−→∗ C′1,t′1
µ ′−→ C′′1,t′1 −→∗ C1,t1
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where C′1,t′1
µ ′−→ C′′1,t′1 is the leftmost transition whose underlying clause is Q′1 H.c Q

′
2. According to

the operational semantics, there are two subcases: either (a) there is a transition in C′′1,t′1 −→∗ C1,t1
whose underlying clause is Q′2 H

′.c′ Q′′2 or (b) Q′2 = Q1 (Q1 the initial state of Q1 A.f Q2). Notice that, in
case (a), Q′2 H

′.c′ Q′′2 ∈ A. We conclude by observing that, by Definition 4, both in case (a) and in case
(b), CyclicQ(Q1 A.f Q2) = true, which is absurd. �

Lemma 2 Let C be a Stipula contract with initial configuration C(Q , -- , --),t. Let also

C(Q , -- , --),t −→∗ C(Q1 , -- , Ψ),t1
µ−→ C(Q1 , Σ , Ψ),t1

−→∗ C(Q′1 , -- , Ψ),t′1
µ ′−→ C(Q′1 , Σ , Ψ′),t′1

(4)

where Q1 A.f Q2 is the underlying clause of µ , Q′1 ev.n Q
′
2 is the underlying clause of µ ′, with Q′1 ev.n Q

′
2 ∈

Q1 A.f Q2 and CyclicC(Q1 A.f Q2) = false. Then let A be the underlying abstract computation of (4):

(a) A = A′ ; Q′1 ev.n Q
′
2;

(b) Tν(A′)≤ Tν(A) is solvable.

Proof : As regards (a), since CyclicC(Q1 A.f Q2) = false, the computation (4) has exactly one transition
that is an instance of Q1 A.f Q2 and, consequently, one transition that is an instance of Q′1 ev.n Q

′
2. By

Definition 3, Q′1 ev.n Q
′
2 must be the last clause of A hence the thesis.

As regards (b), we may decompose A as follows

A = A′ ; Q1 A.f Q2 ; A′′ ; Q′1 ev.n Q
′
2 .

By Lemma 1, the underlying clauses of C(Q , -- , --),t −→∗ C(Q1 , -- , Ψ),t1 occur in A′ and those of
C(Q1 , Σ , Ψ),t1 −→∗ C(Q′1 , -- , Ψ),t′1 occur in A′′. There are two subcases: (b1) the events in A′′ refer to
functions in A′′ and (b2) there is an event in A′′ that refers to a function in A′. We discuss them separately.

Subcase (b1) may be displayed by the drawing

Q *
A.f ... A1.f1 ... ...A2.f2 ... ev.n2 Ak.fk ... ...Ah.fh ... ev.nh ev.n

Q *
A.f

... ...
A'.f'

...
ev.n' A1.f1

... ...
Ah.fh

...
ev.nh ev.n

where the labels indicate the functions (we omit states) and events that are used in the computation of
Θν and the backwards red arrow indicate the connection of an event with its own function. In this case
Θν(A) = Θν(A′)+ν(Q1 A.f Q2)+ k, where Q′1 ev.n Q

′
2 = now+ k>>n@Q′1{S}=>@Q′2. (Since the function

is acyclic and because of the operational semantics, the other events of A.f in A′′, if any, have smaller
time expressions.) Next, let us compute Θν(A′ ; Q1 A.f Q2 ; A′′); we obtain

Θν(A
′ ; Q1 A.f Q2 ; A′′) = Θν(A

′)+ν(Q1 A.f Q2)+
(

∑
i∈1..m

ν(Qi Ai.fi Q
′
i)
)
+
(

∑
j∈1..m′

k j

)
.

where Qi Ai.fi Q
′
i, i∈ 1..m, are the functions of A′′ used by Θν and k j, j ∈ 1..m′ are the events correspond-

ing to a subset of that functions. By the operational semantics ∑ j∈1..m′ k j ≤ k; therefore Θν(A)≤Θν(A′ ;
Q1 A.f Q2 ; A′′) by instantiating every variable in ∑i∈1..m ν(Qi Ai.fi Qi) with 0. Hence Tν(A′ ; Q1 A.f Q2 ;

A′′)≤ Tν(A) is solvable.

Subcase (b2) may be displayed by the drawing
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Q *
A.f ... A1.f1 ... ...A2.f2 ... ev.n2 Ak.fk ... ...Ah.fh ... ev.nh ev.n

Q *
A.f

... ...
A'.f'

...
ev.n' A1.f1

... ...
Ah.fh

...
ev.nh ev.n

where, again, the labels indicate the functions (we omit states) and events that are used in the computation
of Θν and the backwards red arrow indicate the connection of an event with its own function. Let
Q′3 ev.n

′ Q′4 be the rightmost event in A′′ that belongs to a function Q3 A
′.f′ Q4 in A′. In this case we may

further decompose A′ into A′1 ; Q3 A
′.f′ Q4 ; A′2 and A′′ into A′′1 ; Q

′
3 ev.n

′ Q′4 ; A′′2 . Then, by definition of
Θν , we have

Θν(A
′ ; Q1 A.f Q2 ; A′′) = Θν(A

′
1 ; Q3 A

′.f′ Q4)+ k′+
(

∑
i∈1..m

ν(Qi Ai.fi Q
′
i)
)
+
(

∑
j∈1..m′

k j

)
.

where k′ is the maximum time expression of events of Q3 A
′.f′ Q4 in A′2 ; Q1 A.f Q2 ; A′′1 and the two

summands are as in the subcase (b1). Notice that the variable ν(Q1 A.f Q2) does not occur in the above
logical time, while it occurs in Θν(A). Therefore there exists a ground substitution of ν(Q1 A.f Q2) such
that Θν(A′ ; Q1 A.f Q2 ; A′′)≤Θν(A) is solvable. Hence Tν(A′ ; Q1 A.f Q2 ; A′′)≤ Tν(A) is solvable, as
well. �

Every property that is necessary for the proof of the correctness of R+Q has been proved. Hence the
theorem.

Theorem 2 (Correctness of R+Q ). Let C be a Stipula contract with initial state Q and initial configuration
C,t. Let also

C,t−→∗ C′,t′
µ−→C′′,t′ (2)

and Q′ H.c Q′′ be the underlying clause of µ . Then there is A ∈ R+Q (Q
′ H.c Q′′) that is the underlying

abstract computation of (2). Therefore R+Q (Q
′ H.c Q′′) 6=∅.

Proof : Let the computation (2) be C(Q , -- , --),t−→∗ C(Q′ , -- , Ψ),t′
µ−→ C(Q′ , Σ , Ψ),t′. By induc-

tion on the length of C(Q , -- , --),t−→∗ C(Q′ , -- , Ψ),t′
µ−→ C(Q′ , Σ , Ψ′),t′. The proof is similar to that

of Theorem 1 except for the case of µ = ev.n and Q′1 ev.n Q
′
2 ∈ Q1 A.f Q2 and CyclicQ(Q1 A.f Q2) = false.

In this case, the underlying abstract computation of (2) is A= A′ ; Q1 A.f Q2 ; A′′ ; Q′1 ev.n Q
′
2 and, by

Lemma 2, Tν(A′ ; Q1 A.f Q2 ; A′′)≤ Tν(A) is solvable. Hence, by definition of R+Q , A ∈ R+Q (Q
′
1 ev.n Q

′
2).

�
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