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1 Introduction

The logical characterization of computational complexity classes has a long tradition. The
most followed path has been to extensionally characterize complexity classes as the models for
certain logical theories. Logical systems, however, have a built-in computational mechanism
— normalization. The definition of logical systems which could be normalized inside an
interesting class, and which, at the same time, could give extensional characterization of that
same class, is a much more recent research direction. The first interesting logical system to
have a polytime reduction strategy was Bounded Linear Logic [11]. In this system, however,
the bound on the resources is explicitely present in the syntax, as a polynomial indexing the
modality. A better system is Light Linear Logic (LLL) [10], where the introduction of three
modalities (and a suitable management of contexts) allows for a polynomial reduction strategy
(in the proof-net notation, and once the box-nesting depth is fixed); moreover, any polynomial
time computable function can be defined inside LLL. In between LLL and full Linear Logic,
the same paper [10] introduced Elementary Linear Logic (ELL), a system with a (Kalmar)
elementary time normalization and defining all elementary time computable functions (see [8]
for an in-depth study of ELL’s expressiveness and normalization). All these systems derive
from Linear Logic — they limit the computational explosion of normalization by controlling
weakening and contraction via modalities (called exponentials in the linear logic jargoon).
It was first observed by Asperti that these systems maintain their main computational and
expressive properties even in the presence of full weakening. The resulting polynomial system,
Light Affine Logic (LAL) was introduced in [1] and studied in depth in [4]. From the same
papers it is clear how to define the affine version of the elementary logic, EAL. One last
system to appear on the scene is Lafont’s Soft Linear Logic (SLL) [15], a system with a
simple syntax, still enjoying polynomial normalization at fixed depth. All these logics have
been introduced and justified as mere formal systems, without any reference to an intended
or implied logical semantics. Okada, Kanovich, Scedrov and, later, Terui, introduced and
investigated notions of models for LLL [12] and intuitionistic LAL [21]. The present paper
builds on this previous work, defining classes of phase models for EAL and SLL. Following
Lafont [14] — who proved that the addition of full weakening to Linear Logic yields the finite
model property, and hence decidability — we prove that EAL is decidable, by showing it
enjoys the finite model property. This same technique, on the other hand, cannot be applied
to SLL, since it is not an affine logic and it can be easily proved to be undecidable. We
show, however, that even the multiplicative fragment of SLL does not enjoy the finite model
property.
We proceed in an incremental way, by first introducing a notion of a phase model for LAL (a
variation on the one in [21]) and then showing how the same technique can be applied to build
models for EAL. After having obtained our main result, we apply our schema to SLL, for
which no semantics have been introduced so far. Our notions are simple — and, we believe,
natural — extensions of the usual definition used for linear logic (they are “elementary”
definitions, if a pun is allowed. . . ). Since our interest here is mainly in using semantics to
derive syntactical properties, we looked for the simplest notion.

1.1 Related and previous work

The use of phase spaces as models of linear logic dates way back to the origins [9]. La-
font [14] used phase semantics to show that free weakening turns full linear logic (which is
undecidable [16]) into a decidable affine logic LLW. Noticeably, the same result was previ-
ously obtained by Kopylov [13] with different tools. The use of phase semantics to deduce
cut-elimination from completeness (strong completeness) is due to Okada [17, 18, 19]. In
these papers, the technique is applied and generalized to a large number of logics. Okada and
Terui [20] attack the decidability of affine variants of the same systems, extending Lafont’s
approach to various intuitionistic fragments of Linear Logic, including some substructural
ones. In all the logics of [17, 18, 19, 20], however, the exponential is always introduced in the
standard linear logic fashion — the modality “!” is governed by an S4-like rule. This makes
it difficult to directly apply the results of these papers to logics with restricted exponentials,
like EAL, LAL, etc., where “!” is only a functor.
The semantics for systems with restricted exponentials is studied in [12] and [21]. Kanovich,
Okada and Scedrov [12] introduced the notion of phase model for LLL, extending the usual
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notion of phase semantics for linear logic by the use of fibrations. They showed that their
class of models is complete for LLL, obtaining also a strong completeness result, à la Okada.
While fibred models provide a deep insight on LLL, they are not handy to be used as a tool
to prove decidability. Indeed, the quotient of a fibred model modulo a logical congruence (see
Section 3) is not directly a (fibred) model. Finally, Terui [21] gives classes of phase models
for intuitionistic LAL, for which he proves the finite model property and, hence, decidability.
To obtain this result, though, the original notion of a model has to be generalized, in order
to allow the result of a quotient to be a (generalized) model. See Section 4.3 for a detailed
comparison.

1.2 Motivations

At the end of this introduction, it is time to mention the beginning of all of this. The interest
of EAL is not only (in our eyes: is not much) in its rôle in the description of complexity
classes. The properties ensuring its elementary normalization (that is, the box depth of a
link never changes during proof-net normalization) have a remarkable interpretation in the
context of the optimal reduction of λ-terms à la Lévy (see [3] as general reference). Lamping’s
approach to optimal reduction of λ-terms is a graph rewriting algorithm that can be thought
of as composed of two parts. The first part — the abstract algorithm — is responsible for
optimal beta-reduction and incremental duplication; the second part — the oracle — allows
for the presence in the graph of enough distributed information to make the abstract algorithm
correct with respect to the usual notion of reduction. While the abstract algorithm is simple,
clear and compelling, the oracle is complex, heavy and, to a certain extent, debatable. There
are λ-terms, however, for which the oracle is not needed, resulting in a much simpler (and
more efficient!) graph rewriting reduction. λ-terms which are typeable inside EAL form a
large class of terms with this property. This is the starting point of our interest in EAL.
In [2] we used EAL as a tool to prove a complexity result on optimal reduction (and as a
by-product we showed that EAL-typeable terms form a large and expressive class). Then,
we investigated [6] the possibility to automatically infer EAL-typeability. Finally, Coppola
and Ronchi della Rocca [7] prove the existence of principal types for EAL. The present paper
completes the picture with the semantical perspective.

1.3 Outline of the paper

The structure of the paper is the following. Section 2 introduces formal systems for LAL,
EAL and SLL. Section 3 recalls the standard notion of a phase space, states some relevant
properties and gives some results that are used throughout the paper. Phase models for LAL
are defined in Section 4; we prove strong completeness (that is soundness, completeness, and
cut-elimination) in 4.1; in 4.2 we show that the finite model property holds for LAL. The
definition and properties of the phase models for EAL and SLL are the subject of Sections 5
and 6, respectively; decidability of EAL is in 5.2.

Acknowledgments Yves Lafont’s [14] has been a continuous source of inspiration; we are
also happy to thank Yves for the many e-mail exchanges on phase semantics.

2 Systems

All the systems we will describe make use of subsets of the logical language generated by the
grammar

A, B ::= ⊥ | ⊥⊥ | > | >⊥ | α | α
⊥

| AOB | A⊗ B

ANB | A⊕ B | !A | ?A | §A | §A

where α ranges over a set L of atoms. The unary operator ⊥ is extended to the whole
language in the usual De Morgan style; in particular, the following syntactical equivalences
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Identity and Cut.

` A, A⊥
IGMALL

` Γ, A ` ∆, A⊥

` Γ, ∆
UGMALL

Logical Rules.

` ⊥⊥ ⊥⊥GMALL
` Γ
` Γ,⊥ ⊥GMALL ` Γ,> >GMALL

` Γ, A ` ∆, B
` Γ, ∆,A⊗ B

⊗GMALL
` Γ, A, B
` Γ, AOB

OGMALL

` Γ, A
` Γ, A⊕ B

⊕1GMALL
` Γ, B

` Γ, A⊕ B
⊕2GMALL

` Γ, A ` Γ, B
` Γ, ANB

NGMALL

Figure 1: Multiplicative and Additive Linear Logic, MALL

hold on exponential formulae:

?A⊥ ≡ (!A)⊥ (1)

!A⊥ ≡ (?A)⊥ (2)

§A
⊥ ≡ (§A)⊥ (3)

§A
⊥ ≡ (§A)⊥ (4)

The logics we are interested in are obtained from the core of Multiplicative and Additive
Linear Logic (MALL, Figure 1) by adding suitable rules for the exponential connectives.
LAL is a logical system characterising polynomial time. The rules of the sequent calculus
GLAL for LAL are summarized in Figure 2. Notice that we do not suppose the connective
§ to be self-dual. We call LALSD the variant of LAL where § is self-dual — the connective
§ is omitted from the language and the equivalence

§A
⊥ ≡ (§A)⊥

takes the place of both (3) and (4). Moreover, the rule PGLAL becomes

` Γ, ∆, A

` ?Γ, §∆, §A
PGLALSD

in the underlying sequent calculus GLALSD. It is well known that in this system the cut rule
is not eliminable, as shown by the proof:

` A, A⊥

` ?A, §A⊥
` A, A⊥

` §A, ?A⊥

` ?A, ?A⊥

This makes GLALSD not suitable to be studied with phase semantics, since we want to derive
cut-elimination from completeness.
If we add to MALL a functorial exponential rule with restricted contraction and weakening,
we get Elementary Linear Logic (ELL), sketched first in [10] and studied in depth in [8]
(although with a slightly different syntax). The key feature of ELL is its elementary time
normalization, a property which is maintained by adding a full weakening rule. The result-
ing logic, Elementary Affine Logic (EAL), is obtained from MALL by adding the rules in
Figure 3. We already discussed in the introduction its relevance for optimal reduction.
The last system we will consider is Soft Linear Logic [15], a system in which, at fixed box
depth, proof-nets have a polynomial reduction in their size. It is obtained from MALL by
adding the same exponential rule we used in ELL, but with a strong restriction on contraction



3 PRELIMINARIES ON PHASE SEMANTICS 5

Structural Rules.

` Γ
` Γ, A

WGLAL
` Γ, ?A, ?A
` Γ, ?A

CGLAL

Exponential Rules.

` A, B
` ?A, !B

SGLAL
` A
` !A SGLAL

` Γ, ∆,A

` ?Γ, §∆, §A
PGLAL

Figure 2: Light Affine Logic, LAL

Structural Rules.

` Γ
` Γ, A

WGEAL
` Γ, ?A, ?A
` Γ, ?A

CGEAL

Exponential Rule.
` Γ, A
` ?Γ, !A

SGEAL

Figure 3: Elementary Affine Logic, EAL

and weakening. The system SLL is obtained by adding to MALL the rules of Figure 4, where
A(n) stands for

A, . . . , A︸ ︷︷ ︸
n times

.

Given a formal system F we will use the following abbreviations:
• ΞF will be the set of well formed formulae which are provable in F ;
• ∂(F) will be the decision problem of provability on F , which could be seen as a language

over the set of F well formed formulae.

3 Preliminaries on Phase Semantics

We recall in this section the basic definitions and properties of phase semantics for Linear
Logic, see [14]. A phase space is a pair (M,⊥) where M is a commutative monoid and ⊥ is
a subset of M. If (M,⊥) is a phase space and X, Y ⊆ M, we will use the following notations:

XY = {xy | x ∈ X, y ∈ Y}

X ( Y = {z ∈ M | ∀x ∈ X xz ∈ Y}.

We write X⊥ for X ( ⊥. The following lemma establishes some basic results and can be
easily proved.

Lemma 3.1 If (M,⊥) is a phase space and X, Y ⊆ M, then:
i) X ⊆ X⊥⊥;
ii) Y⊥ ⊆ X⊥ whenever X ⊆ Y;
iii) X ( Y⊥ = (XY)⊥;

Exponential Rules.

` Γ, A(n) n ≥ 0

` Γ, ?A
MGSLL

` Γ, A
` ?Γ, !A

SGSLL

Figure 4: Soft Linear Logic, SLL
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iv) X⊥ ∩ Y⊥ = (X ∪ Y)⊥;
v) (X⊥⊥Y⊥⊥)⊥ = (XY)⊥.

If (M,⊥) is a phase space and X is a subset of M such that X = X⊥⊥, we say that X is a fact.
The following technical lemma is handy in proving that sets are facts.

Lemma 3.2 If (M,⊥) is a phase space and X, Y ⊆ M, then:
i) ⊥ is a fact;
ii) X is a fact if and only if X = Z⊥ for some Z ⊆ M;
iii) If Y is a fact, then X ( Y is a fact;
iv) If X and Y are facts, then X ∩ Y is a fact;
v) If X is a fact, then ⊥⊥ ( X = X.

Useful properties can be extended from individual elements of a phase space to whole subsets
of the underlying monoid:

Lemma 3.3 If (M,⊥) is a phase space and X is a subset of M such that x ∈ {x2}⊥⊥ for
every x ∈ X, then X ⊆ (X2)⊥⊥.

If (M,⊥) is a phase space, then the set {x ∈ M | x ∈ {x2}⊥⊥} will be denoted as J(M).

Lemma 3.4 If (M,⊥) is a phase space, then J(M) is a submonoid of M.

Let (M,⊥) be a phase space and let f, g ⊆ M × M be binary relations. If, for every fact
X ⊆ M, f(X) ⊆ g(X)⊥⊥, then we say that f is bounded by g.

Lemma 3.5 Let (M,⊥) be a phase space and let f, g ⊆ M × M be binary relations. If
f(x) ⊆ g(x)⊥⊥ whenever x ∈ M, then f is bounded by g.

Proof. Suppose X ⊆ M and let y ∈ f(X). Then y ∈ f(x), where x ∈ X and, by hypothesis,
f(x) ⊆ g(x)⊥⊥. But, clearly, g(x)⊥⊥ ⊆ g(X)⊥⊥, meaning that y ∈ g(X)⊥⊥. 2

If (M,⊥) is a phase space, a relational monoid homomorphism is a binary relation f ⊆ M×M

such that 1M ∈ f(1M) and f(x)f(y) ⊆ f(xy) for every x and y in M.

Lemma 3.6 If (M,⊥) is a phase space, f ⊆ M ×M is a relational monoid homomorphism
and A, B ⊆ M, then f(A ( B) ⊆ f(A) ( f(B)

Proof. If x ∈ f(A ( B), then x ∈ f(y), where y ∈ A ( B. Now, if z ∈ f(A), then z ∈ f(w)

where w ∈ A, and then xz ∈ f(y)f(w) ⊆ f(yw) ⊆ f(B), because yw ∈ B. 2

If (M,⊥) is a phase space, a logical congruence on (M,⊥) is an equivalence relation ∼ on M

such that:
i) xz ∼ yw whenever x ∼ y and z ∼ w;
ii) ⊥ is closed with respect to ∼.

If M is a set and ∼ is an equivalence on M, then π : M → M/ ∼ is the ∼ canonical map, that
is the function which maps every element of M to its equivalence class; moreover, [x]∼ will
be the equivalence class modulo ∼ containing x. A logical congruence ∼ is said to have finite
index if M/∼ is a finite set.

Lemma 3.7 If (M,⊥) is a phase space, ∼ is a logical congruence on M and A ⊆ M is a fact,
then A is closed under ∼.

Lemma 3.8 If (M,⊥) is a phase space and ∼ is a logical congruence on (M,⊥), then J(M)

is closed under ∼.

Proof. If x ∈ J(M) and x ∼ y, then {x}⊥ = {y}⊥. But

{x}
⊥ = {y}

⊥ ⇒ {x}
⊥⊥ = {y}

⊥⊥

⇒ ({x}
⊥⊥

{x}
⊥⊥)⊥⊥ = ({y}

⊥⊥
{y}

⊥⊥)⊥⊥⇒ ({x}{x})⊥⊥ = ({y}{y})⊥⊥⇒ {x
2
}
⊥⊥ = {y

2
}
⊥⊥

.

By lemma 3.7, y must be in {x2}⊥⊥, and the thesis easily follows. 2

Lemma 3.9 If (M,⊥) is a phase space and ∼ is a logical congruence on (M,⊥), then π(XY) =

π(X)π(Y) and π(X ( Y) = π(X) ( π(Y).
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If (M,⊥) is a phase space, f ⊆ M × M is a binary relation, and ∼ is a logical congruence,
then f∼ ⊆ (M/∼ )× (M/∼ ) is defined by letting ([x]∼, [y]∼) ∈ f∼ whenever (x, y) ∈ f.

Lemma 3.10 If (M,⊥) is a phase space, ∼ is a logical congruence on (M,⊥), f ⊆ M ×M

is a binary relation and X ⊆ M, then:
i) π(f(X)) ⊆ f∼(π(X));
ii) π(f(X)) = f∼(π(X)) whenever X is closed on ∼;
iii) π(f(π−1(X))) = f∼(X) whenever X is closed ∼.

Proof. Easy, from the definition of f∼. 2

If M is monoid, an ideal for M is a set X ⊆ M such that XM ⊆ X.

Lemma 3.11 Let M be a commutative monoid. Then:
i) If Y ⊆ M is an ideal, then X ( Y is an ideal;
ii) Every finite union of ideals is an ideal.

Proof. (i) If Y is an ideal, then YM = Y because, obviously, Y ⊆ YM. Let then x be an
element of (X ( Y)M; this means that x = yz with y ∈ X ( Y and z ∈ M. Let then w be
an element of X; it is clear that xw = (yz)w = (yw)z ∈ Y and that x ∈ X ( Y.
(ii) It suffices to observe that if X1, . . . , Xn ⊆ M are ideals, then

(X1 ∪ . . . ∪ Xn)M = X1M ∪ . . . ∪ XnM = X1 ∪ . . . ∪ Xn

which is the thesis. 2

An ideal of M is a principal ideal if it can be written as xM, for x in M. An ideal is said to
have finite type if it is a finite union of principal ideals. A monoid M is noetherian if all its
ideals have finite type. The following classical result will be useful later.

Lemma 3.12 A free, finitely generated, commutative monoid is noetherian.

If (M,⊥) is a phase space, we denote as ≡ the logical congruence defined by letting x ≡ y iff
{x}⊥ = {y}⊥.

Lemma 3.13 Let (M,⊥) be a phase space, where M is a free and finitely generated monoid
such that every fact is an ideal. Then M/≡ is finite.

Proof. We can assume, without losing generality, that M is Nk and that the operation which
makes M a monoid is the addition. From the hypothesis, ⊥ is an ideal and, by lemma 3.12,
we can conclude that

⊥ =

n[
i=1

uiNk =

n[
i=1

{x ∈ Nk
| x ≥ ui}

for u1, . . . , un ∈ Nk. But it is now clear that there can be only finitely many subsets of
Nk in the form {x}⊥, simply because {x}⊥ = {inf{x, sup{u1, . . . , un}}}⊥ for every x. This, by
definition of ≡, yields the thesis. 2

4 Light Affine Logic

A light affine phase space is a quintuple (M,⊥, φ, ξ) where:
• (M,⊥) is a phase space;
• ξ ⊆ M×M is a relational monoid homomorphism;
• φ ⊆ M×M is bounded by ξ, includes (1M, 1M) and φ(M) ⊆ J(M);
• ⊥ ⊆ M⊥.

Light affine phase spaces form the algebraic structure of the models we are proposing. They
can be seen as ordinary phase spaces with the additional structure (namely, ξ and φ) needed
to model exponentials.

Proposition 4.1 If (M,⊥, φ, ξ) is a light affine phase space and X ⊆ M is a fact, then
⊥ ⊆ X.

Proof. Since X is a fact, by 3.2 X = Y⊥ for some Y ⊆ M. By Lemma 3.1, M⊥ ⊆ Y⊥ = X,
which yields the thesis. 2
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A phase model for LAL is a light affine phase space, enriched with an interpretation for
atoms, that is a tuple (M,⊥, φ, ξ, σ) where (M,⊥, φ, ξ) is a light affine phase space and
σ : L → P(M) maps every atom to a fact.
Given a phase model M for LAL, we can associate a fact JAKM to every formula A in the
usual way. Nonexponential formulae can be treated as in MALL:

J⊥KM = ⊥
J⊥⊥KM = ⊥⊥

J>KM = M

J>⊥KM = M
⊥

JαKM = σ(α)

Jα⊥KM = σ(α)⊥

JAOBKM = (JAK⊥MJBK⊥M)⊥

JA⊗ BKM = (JAKMJBKM)⊥⊥

JANBKM = JAKM ∩ JBKM
JA⊕ BKM = (JAKM ∪ JBKM)⊥⊥.

The semantics for the exponentials is the following:

J!AKM = (φ(JAKM))⊥⊥

J?AKM = (φ(JAK⊥M))⊥

J§AKM = (ξ(JAKM))⊥⊥

J§AKM = (ξ(JAK⊥M))⊥.

This definition can be easily extended to sequents, allowing to define that a GLAL sequent
` Γ is verified in a phase model M for LAL if and only if 1 ∈ J` ΓKM.

Proposition 4.2 If (M,⊥, φ, ξ) is a light affine phase space and X ⊆ M is a fact, then
⊥ ⊆ X.

Proof. Since X is a fact, by 3.2 X = Y⊥ for some Y ⊆ M. By Lemma 3.1, M⊥ ⊆ Y⊥ = X,
which yields the thesis. 2

4.1 Strong Completeness

In proving strong completeness for the class of models we are proposing, we follow the usual
methodology first introduced in [17]. The syntactical model for LAL is the quintuple ML =

(ML,⊥L, φL, ξL, σL) defined as follows:
• ML is the commutative monoid generated by all formulae of LAL; this structure is

isomorphic to the set of all GLAL sequents (endowed with sequent juxtaposition);
• ⊥L is the set of all cut-free provable sequents in GLAL;
• ξL is defined by ξL(A1 . . . An) = {§A1 . . . §An} for every sequence A1 . . . An of LAL

formulae and n ≥ 0;
• φL is defined by

φ
L(A1 . . . An) =


{1ML } if n = 0

{?A1} if n = 1

∅ otherwise

• σL is defined by σL(α) = {α}⊥ for every a ∈ L.

Lemma 4.3 ML is a phase model for LAL.

Proof. The only interesting properties to be verified are the ones on φL. First of all, we
show that φL is bounded by ξL. Now, if A1 . . . An ∈ ML, then
• If n = 0, then φL(1) = {1} ⊆ {1}⊥⊥ = {ξL(1)}⊥⊥

• If n = 1, then φL(A1) = {?A1} ⊆ {§A1}⊥⊥ = {ξL(A1)}⊥⊥, because, for every Γ

Γ, §A1 ∈ ⊥ ⇒ Γ, ?A1 ∈ ⊥

as it can be proved by an easy induction on the structures of GLAL proofs;
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• If n > 1, then φL(A1 . . . An) = ∅.
This means that φL(A1 . . . An) ⊆ {ξL(A1 . . . An)}⊥⊥, which hields, by lemma 3.5, φL(X) ⊆
{ξL(X)}⊥⊥ for every X ⊆ ML. If Γ, ?A, ?A is cut-free provable, then Γ, ?A is cut-free provable,
too. As a consequence, φL ranges over J(M). 2

Lemma 4.4 (Okada) For every formula A in LAL, we have that JAK ⊆ {A}⊥ in ML.

Proof. We can prove this by a structural induction on A. The only interesting inductive
cases are the following:
• A = !B; by inductive hypothesis, JBK ⊆ {B}⊥ and so φ(JBK) ⊆ φ({B}⊥). Now, if C B ∈ ⊥,

then, by rule SGLAL, ?C !B ∈ ⊥; moreover, if B ∈ ⊥ then, by rule SGLAL, !B ∈ ⊥. Then,
we can conclude that φ(JBK)⊥⊥ ⊆ {!B}⊥, proving the inclusion JAK ⊆ {A}⊥;

• A = ?B; by inductive hypothesis, JBK ⊆ {B}⊥ and so JBK⊥ ⊇ {B}⊥⊥; obviously, B ∈ {B}⊥⊥,
and so φ(JBK⊥) ⊇ {?B}, which yields JAK = φ(JBK⊥)⊥ ⊆ {?B}⊥ = {A}⊥;

• A = §B; by inductive hypothesis, JBK ⊆ {B}⊥ and so ξ(JBK) ⊆ ξ({B}⊥). Now, if Γ B ∈ ⊥,
then, by rule PGLAL, §Γ §B ∈ ⊥; this means that ξ({B}⊥) ⊆ {§B}⊥. Then, we can
conclude that ξ(JBK)⊥⊥ ⊆ {§B}⊥, proving the inclusion JAK ⊆ {A}⊥;

• A = §B; by inductive hypothesis, JBK ⊆ {B}⊥ and so JBK⊥ ⊇ {B}⊥⊥; obviously, B ∈
{B}⊥⊥, and so ξ(JBK⊥) ⊇ {§B}, which yields JAK = ξ(JBK⊥)⊥ ⊆ {§B}⊥ = {A}⊥. 2

Lemma 4.5 If ` Γ is provable in LAL, then ` Γ is verified in all phase models for LAL.

Proof. We proceed by induction on the structure of the proof π of ` Γ :
• If the last GLAL rule used to build π is WGLAL Γ can be written as ∆, A and the

immediate premise of ` Γ in π will be ` ∆. It is now easy to realize that

1 ∈ J` ∆, AK ⇔ J` ∆K⊥JAK⊥ ⊆ ⊥
1 ∈ J` ∆K ⇔ J` ∆K⊥ ⊆ ⊥

Lemma 4.2 implies JAK⊥ ⊆ ⊥⊥ while, by inductive hypothesis, J` ∆K⊥ ⊆ ⊥. As a
consequence, J` ∆K⊥JAK⊥ ⊆ ⊥ and thus 1 ∈ J` ∆, AK, that is the thesis; here, we have
used the condition ⊥ ⊆ M⊥;

• If the last GLAL rule used to build π is CGLAL, then Γ can be written as ∆, ?A and the
premise of ` Γ in π can itself be written as ` ∆, ?A, ?A. Now we can write

1 ∈ J` ∆, ?AK ⇔ J` ∆K⊥J?AK⊥ ⊆ ⊥
1 ∈ J` ∆, ?A, ?AK ⇔ J` ∆K⊥(J?AK⊥J?AK⊥)⊥⊥ ⊆ ⊥

By lemma 3.3, it follows that φ(JAK⊥) ⊆ (φ(JAK⊥)φ(JAK⊥))⊥⊥; closing the subsets we
obtain

φ(JAK⊥)⊥⊥ ⊆ ((φ(JAK⊥)φ(JAK⊥))⊥⊥)⊥⊥ = (φ(JAK⊥)⊥⊥φ(JAK⊥)⊥⊥)⊥⊥;

this yields, in particular
J?AK⊥ ⊆ (J?AK⊥J?AK⊥)⊥⊥;

as a consequence,
J` ∆K⊥J?AK⊥ ⊆ J` ∆K⊥(J?AK⊥J?AK⊥)⊥⊥

from which the thesis can be easily obtained; here we have used the conditions on φ;
• If the last rule applied in π is SGLAL, then it suffices to notice that the following chain

of implications holds:

1 ∈ J` A, BK ⇒ 1 ∈ (JAK⊥JBK⊥)⊥⇒ 1 ∈ JAK⊥ ( JBK⇒ JAK⊥ ⊆ JBK⇒ φ(JAK⊥) ⊆ φ(JBK)⇒ 1 ∈ (φ(JAK⊥)φ(JBK)⊥)⊥⇒ 1 ∈ (φ(JAK⊥)⊥⊥φ(JBK)⊥⊥⊥)⊥⇒ 1 ∈ J` ?A, !BK;
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• If the last rule applied in π is SGLAL, then it suffices to notice that the following chain
of implications holds:

1 ∈ J` AK ⇒ 1 ∈ φ(JAK)⇒ 1 ∈ (φ(JAK)⊥⊥⇒ 1 ∈ J!AK;

• If the last rule applied in π is PGLAL, then it suffices to notice that the following chain
of implications holds:

1 ∈ J` A1, . . . , An, B1, . . . , Bm, CK⇒ 1 ∈ (JA1K⊥ . . . JAnK⊥JB1K⊥ . . . JBmK⊥JCK⊥)⊥⇒ 1 ∈ JA1K⊥ . . . JAnK⊥JB1K⊥ . . . JBmK⊥ ( JCK⇒ JA1K⊥ . . . JAnK⊥JB1K⊥ . . . JBmK⊥ ⊆ JCK⇒ ξ(JA1K⊥) . . . ξ(JAnK⊥)ξ(JB1K⊥) . . . ξ(JBmK⊥) ⊆ ξ(JCK)⇒ (ξ(JA1K⊥)⊥⊥ . . . ξ(JAnK⊥)⊥⊥ξ(JB1K⊥) . . . ξ(JBmK⊥))⊥⊥ ⊆ ξ(JCK)⊥⊥⇒ (φ(JA1K⊥) . . . φ(JAnK⊥)ξ(JB1K⊥) . . . ξ(JBmK⊥))⊥⊥ ⊆ ξ(JCK)⊥⊥⇒ 1 ∈ ((φ(JA1K⊥) . . . φ(JAnK⊥)ξ(JB1K⊥) . . . ξ(JBmK⊥))⊥⊥ξ(JCK)⊥)⊥⇒ 1 ∈ ((φ(JA1K⊥)⊥⊥ . . . φ(JAnK⊥)⊥⊥ξ(JB1K⊥)⊥⊥ . . . ξ(JBmK⊥)⊥⊥)⊥⊥ξ(JCK)⊥)⊥⇒ 1 ∈ (J` ?A1, . . . , ?An, §B1, . . . , §BMK⊥J§CK⊥)⊥⇒ 1 ∈ J` ?A1, . . . , ?An, §B1, . . . , §Bm, §CK;

we used the boundness condition on φ and ξ.
This concludes the proof. 2

Theorem 4.6 (Strong Completeness) Let A be a formula. The following four conditions
are then equivalent:

i) ` A is provable in LAL;
ii) Every phase model for LAL verifies A;
iii) ML verifies A;
iv) ` A is cut-free provable in LAL.

4.2 Decidability

To prove that LAL is decidable, we will prove it enjoys the finite model property. Follow-
ing [14], we will iteratively reduce the size of the monoid underlying our syntactical model
until we reach a finite monoid; during this process, we will maintain, as an invariant, the fact
that the model we are dealing with is itself complete with respect to GLAL.

4.2.1 Excluding Useless Elements from the Model

If A is a LAL formula and ` A is provable in GLAL with proof π, then π could, in general,
contain formulae that are not subformulae of A; due to cut elimination, however, we can state
that ` A is provable if and only if there is a proof π for ` A which contains only subformulae
of ` A. This simple observation, known as the subformula property, can be exploited in the
context of phase spaces to drastically reduce the size of ML.
If A is a formula, we will denote as LALA the logic obtained by restricting our logical language
to subformulae of A; similarly we can denote the restriction of GLAL to subformulae of
A as GLALA. The notions of a phase model and of verifiability by a phase model can
be easily extended to LALA. The syntactic model for GLALA is the quintuple ML

A =

(ML
A,⊥LA, φLA, ξLA, σLA) where:
• ML

A is the free monoid generated by all the subformulae of A;
• ⊥LA is the set of all cut-free provable GLALA sequents;
• φLA is defined as follows:

φ
L
A(A1 . . . An) =


{1ML

A
} if n = 0

{?A1} if n = 1 and ?An is a subformula for A

∅ otherwise
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• ξLA is defined as follows:

ξ
L
A(A1 . . . An) =

 {§A1 . . . §An} if all the §Ai are subformulae of A

∅ otherwise

• σLA is defined as follows:

σ
L
A(α) =


{α}⊥ if α is a subformula of A

{α⊥}⊥⊥
if α⊥ is a subformula of A

but α is not a subformula of A

Lemma 4.7 For every formula A, we have that JAK ⊆ {A}⊥ in ML
A.

Lemma 4.8 If Γ = A1, . . . , An, where all the Ai are subformulae of A and ` Γ is provable
in GLAL, then all the phase models for LALA verify ` Γ .

Proof. Assume, by way of contradiction, that a phase model for GLALA exists that does not
verify ` Γ . Then, we could easily obtain a phase model for GLAL that does not verify ` Γ , too:
it suffice to extend σ to atoms not in A in arbitrary way. By strong completeness, however,
` Γ could not be provable in GLAL, and this clearly does not agree with the hypothesis,
because if ` Γ ∈ ΞGLALA then ` Γ ∈ ΞGLAL. 2

We can then give a result that strongly links GLALA to GLAL:

Theorem 4.9 If A is a formula, then the following three conditions are equivalent:
i) ` A is provable in GLALA;
ii) ` A is provable in GLAL;
iii) ML

A verifies A.

4.2.2 Exploiting Logical Congruences

At this point, we need to analyze how our phase models for LALA behave with respect to
logical congruences on the underlying phase space.
Given a logical congruence ∼ on the phase space (M,⊥) and a phase modelM = (M,⊥, φ, ξ, σ)

for LALA, the quintuple M/∼ = (M∼,⊥∼, φ∼, ξ∼, σ∼) is defined as follows:
• M∼ is the quotient monoid of M with respect to ∼;
• ⊥∼ is the subset π(⊥) of M∼;
• σ∼ is defined from σ by letting σ∼(α) = π(σ(α)).

Lemma 4.10 If ∼ is a logical congruence, M is a phase model for LALA, then M/ ∼ is a
phase model, too.

Proof. The only interesting facts to be verified are the properties of ξ∼ and φ∼. Now:

ξ
∼([x]∼)ξ∼([y]∼) = {π(z)π(w) | z ∈ ξ([x]∼), w ∈ ξ([y]∼)}

= {π(v) | v ∈ ξ([x]∼)ξ([y]∼)}

⊆ {π(v) | v ∈ ξ([x]∼[y]∼)}

= ξ
∼([x]∼[y]∼).

Moreover, if x ∈ M, then

φ
∼([x]∼) = φ(π(π−1([x]∼)))

= π(φ(π−1([x]∼)))

⊆ π(ξ(π−1([x]∼))⊥⊥)

= π(ξ(π−1([x]∼)))⊥⊥

= ξ
∼([x]∼)⊥⊥.

This, by lemma 3.5, implies that φ∼ is bounded by ξ∼. Now, notice that

x ∈ {x
2
}
⊥⊥ ⇒ [x]∼ ∈ π({x2

}
⊥⊥)⇒ [x]∼ ∈ {π(x2)}⊥⊥⇒ [x]∼ ∈ {[x]∼[x]∼}

⊥⊥
.

This means that φ∼ ranges over J(M∼). All the other conditions can be trivially verified. 2
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We can now give an essential result.

Proposition 4.11 If A is a formula in LALB (where A is a subformula of B), ∼ is a logical
congruence on (M,⊥) and M = (M,⊥, φ, ξ, σ) is a phase model for LALB, then:

i) π(JAKM) = JAKM/∼;
ii) 1M ∈ JAKM ⇔ 1M∼ ∈ JAKM/∼;
iii) M verifies A iff M/ ∼ verifies A.

Proof. If we prove the first of the three claims, the proof is finished, because the other two
can be easily deduced from the first. We can proceed by induction on the structure of A, and
the only interesting inductive cases are those involving φ and ξ. But the results on lemmas
3.7, 3.9 and 3.10 give us exactly what we need. 2

At this point, we can give an essential result.

Theorem 4.12 Let ∼ be a logical congruence of finite index on (ML
A,⊥LA). Then the following

five conditions are equivalent:
i) ` A is provable in LAL.;
ii) All finite phase models for LAL verify A;
iii) ML

A/ ∼ verifies A;
iv) ML

A verifies A;
v) ` A is cut-free provable in LAL.

Proving that LAL enjoys the finite model property involves finding a logical congruence that
fits the conditions of the previous theorem. But, by results on section 4.2.1, ≡ is a good
candidate:

Proposition 4.13 If (ML
A,⊥LA, φLA, σLA) is the syntactical model for LALA, then every fact

X ⊆ ML
A is an ideal.

Proof. Let us suppose that X ⊆ ML
A is a fact. Then X = Y⊥ for Y a subset of ML

A. Let now
x be an element of XML

A; it is obvious that x = yz, where y ∈ X = Y⊥ and z ∈ MA. At this
point, let w be an element of Y and let us show that xw ∈ ⊥. By definition, yw ∈ ⊥ and
then, by the definition of a light affine phase space, yw ∈ (ML

A)⊥. We can then conclude that
xw = (yz)w = (yw)z ∈ ⊥. 2

Theorem 4.14 The problem ∂(GLAL) is decidable.

Proof. LAL enjoys the subformula property, in view of its cut-elimination. From this, we
obtain a semidecision procedure for ∂(GLAL). On the other hand, from the finite model
property for LAL we obtain a semidecision procedure for the complement of this set. 2

4.3 Comparison with Previous Work

The idea of using some kind of morphism (on the underlying monoid) to capture the semantic
of modalities goes back to [12], where it has been used to model LLL through fibred phase
spaces; note that § is not a self-dual connective in [12], too. Our definition is simpler than
the notion of fibred phase spaces, in that we let the sequence of phase spaces in a fibred
phase space collapse to just one. This choice could be regarded as a useless restriction, but
it makes easier to reach the goal of proving decidability of LAL. From another perspective,
we get more general structures than fibred phase spaces, since we shift from single-valued
morphisms (functions) to multi-value morphism (binary relations). Other constraints (such
as the intermediate value property) are not needed in our definition, reflecting the simpler
structure of LAL with respect to LLL [1]. The strong constraint ⊥ ⊆ M⊥ models affinity,
as in [14] for LLW.
Our models are similar to those proposed by Terui [21] in the context of ILAL, the intu-
itionistic variant of Light Affine Logic. Terui proposed two classes of models. The first one is
slightly less general than ours, exponential connectives being interpreted by way of usual mor-
phisms on the underlying monoid. This class can be used to prove strong completeness, but
is not closed under the quotient model construction. In particular x ∼ y does not necessarily
imply ξ(x) ∼ ξ(y), meaning that ξ∼ can be multi-valued even if ξ is a function. This problem
cannot be circumvented by merely adding additional conditions on the definition of a model.
Indeed, even the syntactical model ML exhibits this behaviour; as an example, A, B ≡ AOB,
while §A, §B 6≡ §(AOB).
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To prove decidability of ILAL, Terui introduces generalized models, where exponential con-
nectives are interpreted by functions on P(M) (M being the underlying monoid); these objects
must satisfy a number of remarkable conditions, monotonicity in primis. Every phase model
for LAL, as we have defined it, is actually a generalized model in the sense of Terui, once re-
lations are interpreted as powerset functions. The converse does not hold, since one can easily
build a generalized model where § is interpreted by way of a function Θ : P(M) → P(M)

where Θ(∅) 6= ∅. This function is not induced by any binary relation on M.
Our class of models is closed under the quotient construction and, at the same time, does not
involve higher-order structures, such as powerdomains. Moreover, this definition smoothly
scales to EAL and SLL, as we will see in the next two sections.

5 Elementary Affine Logic

An elementary affine phase space is a triple (M,⊥, φ) where:
• (M,⊥) is a phase space;
• φ ⊆ M×M is a relational monoid homomorphism such that φ(M) ⊆ J(M);
• ⊥ ⊆ M⊥.

Proposition 5.1 If (M,⊥, φ) is an affine elementary phase space and X ⊆ M is a fact, then
⊥ ⊆ X.

A phase model for EAL is a quadruple (M,⊥, φ, σ), where (M,⊥, φ) is an elementary affine
phase space and the intepretation σ maps every atom α in L to a fact σ(α) ⊆ M. The
interpretation of non-exponential formulae (with respect to a phase model) is defined as for
MALL; for exponential formulae we have:

J!AKM = (φ(JAKM))⊥⊥

J?AKM = (φ(JAK⊥M))⊥.

5.1 Strong Completeness

The syntactical model for EAL is the quadruple MA = (MA,⊥A, φA, σA) where:
• MA is the commutative monoid generated by all formulae of EAL; this structure is

isomorphic to the set of GEAL sequents (with juxtaposition);
• ⊥A is the set of all cut-free provable sequents in GEAL;
• φA is defined by imposing φA(A1 . . . An) = {?A1 . . . ?An} for every sequence A1, . . . , An

of EAL formulae and n ≥ 0;
• σA is defined by σA(a) = {a}⊥ for any a ∈ L.

Lemma 5.2 MA is a phase model for EAL.

Proof. We only check that ⊥ ⊆ M⊥. If Γ ∈ ⊥ then, by definition, ` Γ is cut-free provable in
GEAL. If, now, ` ∆ is an arbitrary sequent in M, it is clear that ` Γ, ∆ is cut-free provable in
GEAL, because the following is a valid GEAL deduction

` Γ

` Γ, ∆
WGEAL

As an immediate consequence, ⊥ ⊆ M⊥. 2

On this class of phase models, we can give soundness and completeness results in the same
way as we did for LAL.

Lemma 5.3 (Okada) For every EAL formula A, we have that JAK ⊆ {A}⊥ in MA.

Proof. We can prove this by a structural induction on A. The only two interesting inductive
cases are the following:
• If A = !B then, by inductive hypothesis, JBK ⊆ {B}⊥ and so φ(JBK) ⊆ φ({B}⊥). Now, if

Γ B ∈ ⊥, then, by rule SGEAL, ?Γ !B ∈ ⊥; this means that φ({B}⊥) ⊆ {!B}⊥. Then, we
can conclude that φ(JBK)⊥⊥ ⊆ {!B}⊥, proving the inclusion JAK ⊆ {A}⊥.
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• If A = ?B, we can observe that, by inductive hypothesis, JBK ⊆ {B}⊥ and then JBK⊥ ⊇
{B}⊥⊥; this, in particular, yields φ(JBK⊥) ⊇ φ({B}⊥⊥). Obviously B ∈ {B}⊥⊥ and then
φ({B}⊥⊥) ⊇ {?B}. We can then infer the inclusion φ(JAK⊥)⊥ ⊆ {A}⊥.

All other cases can be proved exactly as for MALL (see, for example, [14]). 2

Lemma 5.4 If ` Γ is provable in EAL, then ` Γ is verified in all phase models for EAL.

Proof. We can proceed exactly as for GLAL (see lemma 4.5). If π is a proof of ` Γ (which
must exist by hypothesis), we proceed by induction on the structure of π. But the only
inductive case which asks for an argument different from the ones used for GLAL is the one
involving the PGEAL rule; in this case:

1 ∈ J` A1 . . . An, BK ⇒ 1 ∈ (JA1K⊥ . . . JAnK⊥JBK⊥)⊥⇒ 1 ∈ JA1K⊥ . . . JAnK⊥ ( JBK⇒ JA1K⊥ . . . JAnK⊥ ⊆ JBK⇒ φ(JA1K⊥) . . . φ(JAnK⊥) ⊆ φ(JBK)⇒ φ(JA1K⊥) . . . φ(JAnK⊥) ⊆ φ(JBK)⊥⊥⇒ 1 ∈ (φ(JA1K⊥) . . . φ(JAnK⊥)φ(JBK)⊥)⊥⇒ 1 ∈ (φ(JA1K⊥)⊥⊥ . . . φ(JAnK⊥)⊥⊥φ(JBK)⊥⊥⊥)⊥⇒ 1 ∈ (J?A1K⊥ . . . J?AnK⊥J!BK⊥)⊥⇒ 1 ∈ J` ?A1, . . . , ?An, !BK.

This concludes the proof. 2

Theorem 5.5 (Strong Completeness) Let A be a formula. The following four conditions
are then equivalent:

i) ` A is provable in EAL;
ii) Every phase model for EAL verifies A;
iii) MA verifies A;
iv) ` A is cut-free provable in EAL.

5.2 Decidability

Like LAL, EAL enjoys the finite model property. In this section, we will prove that EAL
provability is decidable, following again [14] in building a phase model whose underlying
monoid is finitely generated.

Remark 5.6 One referee suggested that the decidability of EAL could be obtained by reduc-
tion to the decidability of LAL. Indeed, let [·] be the translation from EAL formulae to LAL
formulae defined as [!A] = §A and leaving all other connectives ( ? included) unchanged. It is
easy to see that a formula A is cut-free EAL-provable iff [A] is cut-free LAL-provable, see [5].
The cut-elimination theorem (which we derived in 5.5) allows to conclude.

If A is a formula, we will denote as EALA the logic obtained by restricting our logical language
to subformulae of A; similarly we can denote the restriction of GEAL to subformulae of A as
GEALA. The notions of a phase model and of verifiability by a phase model can be easily
extended to EALA.
The syntactic model for GEALA is the quadruple MA

A = (MA
A,⊥AA, φAA, σAA), where:

• MA
A is the free monoid generated by all the subformulae of A;

• ⊥AA is the set of all cut-free provable GEALA sequents;
• φAA is defined as follows:

φ
A
A(A1 . . . An) =

 {?A1 . . . ?An} if all the ?Ai are subformulae of A

∅ otherwise

• σAA is defined as follows:

σ
A
A(α) =


{α}⊥ if α is a subformula of A

{α⊥}⊥⊥
if α⊥ is a subformula of A

but α is not a subformula of A
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Lemma 5.7 For every formula A, we have that JAK ⊆ {A}⊥ in MA
A.

Lemma 5.8 If Γ = A1, . . . , An, where all the Ai are subformulae of A and ` Γ is provable
in GEAL, then all the phase models for EALA verify ` Γ .

Proof. Assume, by way of contradiction, that a phase model for GEALA exists that does
not verify ` Γ . Then, we could easily obtain a phase model for GEAL that does not verify
` Γ , too. By theorem 5.5, ` Γ could not be provable in GEAL, but this clearly does not agree
with the hypothesis, because if ` Γ ∈ ΞGEALA then ` Γ ∈ ΞGEAL. 2

We can then give a result that strongly links GEAL and GEALA:

Theorem 5.9 If A is a formula, then the following three conditions are equivalent:
i) ` A is provable in GEALA;
ii) ` A is provable in GEAL;
iii) MA

A verifies A.

Given a logical congruence ∼ on the phase space (M,⊥) and a phase model M = (M,⊥, φ, σ)

for EALA, the quadruple M/∼ = (M∼,⊥∼, φ∼, σ∼) is defined as follows:
• M∼ is the quotient monoid of M with respect to ∼;
• ⊥∼ is the subset π(⊥) of M∼;
• σ∼ is defined from σ by letting σ∼(a) = π(σ(s)).

Lemma 5.10 If M = (M,⊥, φ, σ) is a phase model for EALA, then M/∼ is a phase model
for EALA.

Lemma 5.11 If A is a formula in EALB (where A is a subformula of B), ∼ is a logical
congruence on (M,⊥) and M = (M,⊥, φ, σ) is a phase model for EALB, then:

i) π(JAKM) = JAKM/∼;
ii) 1M ∈ JAKM ⇔ 1M∼ ∈ JAKM/∼;
iii) M verifies A iff M/∼ verifies A.

At this point, we can give a result similar to Theorem 4.12.

Theorem 5.12 Let ∼ be a logical congruence of finite index on (MA
A,⊥AA), such that MA

A =

(MA
A,⊥AA, φAA, σAA) respects ∼. Then the following five conditions are equivalent:
i) ` A is provable in EAL.;
ii) All finite phase models for EAL verify A;
iii) MA

A/∼ verifies A;
iv) MA

A verifies A;
v) ` A is cut-free provable in EAL.

Proving that EAL enjoys the finite model property involves finding a logical congruence that
fits the conditions of the previous theorem. Once again, ≡ can be fruitfully used in this
context:

Proposition 5.13 If (MA
A,⊥AA, φAA, σAA) is the syntactical model for EALA, then every fact

X ⊆ MA
A is an ideal.

Finally, we can give the result we have anticipated at the beginning of this section.

Theorem 5.14 The problem ∂(GEAL) is decidable.

6 Soft Linear Logic

6.1 Phase Semantics

A soft phase space is a triple (M,⊥, φ) such that
• (M,⊥) is a phase space;
• φ ⊆ M×M is a relational monoid homomorphism such that (Xn)⊥ ⊆ φ(X)⊥ for every

X ⊆ M and every natural number n.
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A phase model for SLL is a quadruple (M,⊥, φ, σ) where (M,⊥, φ) is a soft phase space
and the intepretation σ maps every atom α of L to a fact σ(α) ⊆ M. Given a phase model
M = (M,⊥, φ, σ) for SLL, we can associate to every formula A in SLL and to every sequent
` Γ in GSLL a fact as we have previously done for EAL, with the same interpretation for
exponential formulae:

J!AKM = (φ(JAKM))⊥⊥

J?AKM = (φ(JAK⊥M))⊥.

The syntactical model for SLL is the quadruple MS = (MS ,⊥S , φS , σS) defined as fol-
lows:
• MS is the commutative monoid generated by all formulae of SLL; this structure is

isomorphic to the set of all GSLL sequents (with juxtaposition);
• ⊥S is the set of all cut-free provable sequents in SLL;
• φS is defined by letting φS(A1 . . . An) = {?A1 . . . ?An} for every sequence A1 . . . An of

formulae in SLL and n ≥ 0;
• σS is defined, as usual, by putting σS(α) = {α}⊥ for every α ∈ L.

Lemma 6.1 MS is a phase model for GSLL.

Proof. The only interesting thing to prove is the condition on φS . But let A ⊆ MS and let
Γ ∈ (An)⊥, ∆ ∈ φ(A); this means, in particular, that ∆ = ?Λ, for Λ being an element of A;
by definition, Γ, Λn ∈ ⊥ and, by rule MGSLL, Γ, ∆ ∈ ⊥. This concludes the proof. 2

Lemma 6.2 (Okada) For every formula A in SLL, we have that JAK ⊆ {A}⊥ in MS .

Proof. We can proceed exactly as for lemma 5.3. 2

Lemma 6.3 If ` Γ is provable in SLL, then every phase model for SLL verifies ` Γ .

Proof. We can proceed, exactly as for EAL, by induction on the structure of π. The only
interesting inductive cases are the following two:
• If the last rule applied is MGSLL, we can write

1 ∈ J` A
(n)

, BK ⇒ 1 ∈ ((JAK⊥)nJBK⊥)⊥⇒ 1 ∈ (((JAK⊥)n)⊥⊥JBK⊥)⊥⇒ 1 ∈ (φ(JAK⊥)⊥⊥JBK⊥)⊥⇒ 1 ∈ (J?AK⊥JBK⊥)⊥⇒ 1 ∈ J` ?A, BK.

• If the last rule applied is SGSLL, then it is sufficient to observe that

1 ∈ J` A1 . . . An, BK ⇒ 1 ∈ (JA1K⊥ . . . JAnK⊥JBK⊥)⊥⇒ 1 ∈ JA1K⊥ . . . JAnK⊥ ( JBK⇒ JA1K⊥ . . . JAnK⊥ ⊆ JBK⇒ φ(JA1K⊥) . . . φ(JAnK⊥) ⊆ φ(JBK)⇒ φ(JA1K⊥) . . . φ(JAnK⊥) ⊆ φ(JBK)⊥⊥⇒ 1 ∈ (φ(JA1K⊥) . . . φ(JAnK⊥)φ(JBK)⊥)⊥⇒ 1 ∈ (φ(JA1K⊥)⊥⊥ . . . φ(JAnK⊥)⊥⊥φ(JBK)⊥⊥⊥)⊥⇒ 1 ∈ (J?A1K⊥ . . . J?AnK⊥J!BK⊥)⊥⇒ 1 ∈ J` ?A1, . . . , ?An, !BK.

All the other cases can be proved exactly as we have done for EAL. 2

Theorem 6.4 (Strong Completeness) Let A be an SLL formula. The following four con-
ditions are then equivalent:

i) ` A is provable in SLL;
ii) Every phase model for SLL verifies A.
iii) MS verifies A;
iv) ` A is cut-free provable in SLL;
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6.2 Finite Model Property

SLL does not admit full weakening and, as a consequence, Lafont’s argument cannot be
applied to this logic. In this section, we will show that even the multiplicative fragment of
SLL (which we call MSLL) does not enjoy the finite model property. Indeed, the counter
example given in [14] for MELL works also for SLL. We will not give the definitions of phase
models for this fragment, because they can be easily inferred from the ones for full SLL.

Proposition 6.5 If α, β ∈ L, then the formula

A = ?α⊥O?(α⊥Oβ
⊥)O?(α⊗ β⊗⊥)Oβ

is verified by every finite phase model for SLL but is not provable.

Proof. We can adapt the counterexample on the finite model property for MELL [14] with
only minor variations. In the following, we will write Bn for

B⊗ . . .⊗ B︸ ︷︷ ︸
n times

If (M,⊥, φ, σ) is an arbitrary finite phase model, then there will be a finite number of subsets
of M and, in particular, a finite number of facts; this naturally yields the existence of two
natural numbers p and q with p < q, such that JβpK = JβqK. Let now B be the formula
(βp)⊥Oβq; then

JB⊥K = J((βp)⊥Oβ
q)⊥K = Jβp ⊗ (βq)⊥K

= (JβpKJ(βq)⊥K)⊥⊥

= (JβpKJβqK⊥)⊥⊥

⊆ ⊥.

But 1 ∈ J?B⊥K⊥, because

JB⊥K ⊆ ⊥ ⇒ JB⊥K⊥ ⊇ ⊥⊥⇒ φ(JB⊥K⊥) ⊇ φ(⊥⊥)⇒ φ(JB⊥K⊥)⊥⊥ ⊇ φ(⊥⊥)⊥⊥⇔ J?B⊥K⊥ ⊇ φ(⊥⊥)⊥⊥

and, obviously,

1 ∈ φ(1) ⊆ φ(⊥⊥) ⇒ {1}
⊥⊥ ⊆ φ(⊥⊥)⊥⊥⇒ 1 ∈ φ(⊥⊥)⊥⊥.

On the other hand, it is clear that ` ?B⊥OA ∈ ΞGELL, because

?B⊥OA ≡ ?(βp ⊗ (βq)⊥)O?α⊥O?(α⊥Oβ
⊥)O?(α⊗ β⊗⊥)Oβ

and in GSLL the following three deductions are valid

` β⊗ . . .⊗ β︸ ︷︷ ︸
p times

, β
⊥

, . . . , β
⊥︸ ︷︷ ︸

p times

` β
⊥

, . . . , β
⊥︸ ︷︷ ︸

q times

, α
⊥

, . . . , α
⊥︸ ︷︷ ︸

q−1 times

, α⊗ β⊗⊥, . . . , α⊗ β⊗⊥︸ ︷︷ ︸
q−1 times

, β

` βp ⊗ (

q times︷ ︸︸ ︷
β
⊥O . . .Oβ

⊥),

q−1 times︷ ︸︸ ︷
α
⊥

, . . . , α
⊥

,

p times︷ ︸︸ ︷
β
⊥

, . . . , β
⊥

,

q−1 times︷ ︸︸ ︷
α⊗ β⊗⊥, . . . , α⊗ β⊗⊥, β

` ?(βp ⊗ (βq)⊥)O?α⊥O?(α⊥Oβ⊥)O?(α⊗ β⊗⊥)Oβ

By theorem 6.4, M verifies ` ?B⊥OA and so even ` A, because J` ?B⊥OAK and J?B⊥K⊥ both
contain 1M and, moreover, J` ?B⊥OAK = (J?B⊥K⊥JAK⊥)⊥ = J?B⊥K⊥ ( JAK. The only thing
that remains to be proved is the fact that ` A is not provable in GSLL. But if ` A were
provable, then it would we provable in the sequent calculus for MELL. By a result given in
[14], however, ` A is not provable in MELL. 2
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