
The κ-Lattice: Decidability Boundaries
for Qualitative Analysis in Biological Languages

Giorgio Delzanno1, Cinzia Di Giusto2, Maurizio Gabbrielli2, Cosimo Laneve2,
and Gianluigi Zavattaro2

1 Dipartimento di Informatica e Scienze dell’Informazione,
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Abstract. The κ-calculus is a formalism for modelling molecular bi-
ology where molecules are terms with internal state and sites, bonds
are represented by shared names labelling sites, and reactions are repre-
sented by rewriting rules. Depending on the shape of the rewriting rules,
a lattice of dialects of κ can be obtained. We analyze the expressive
power of some of these dialects by focusing on the thin boundary be-
tween decidability and undecidability for problems like reachability and
coverability. This analysis may be used, for instance, for excluding the
genesis of dangerous substances.

1 Introduction

In recent years we are witnesses of an increasing interest in applications of spec-
ification languages used in concurrency as formal models of biological systems.
Languages like Petri nets, term rewriting, and process calculi are becoming com-
mon idioms for fostering the cooperation between researchers working in biology
and computer science [1,2,3,4,5,6,7,8,9,10,11].

Qualitative analysis like reachability [4,7] and symbolic model checking [12],
and static analysis like abstract interpretation [13] can be used for validation and
optimization (e.g. detection of dead rules and dependencies) of models that are
used by biologists for experiments in silico (e.g. stochastic simulations). However,
general purpose decision procedures are not always applicable to validate formal
models of biological systems. Indeed, the level of granularity used in modelling
biological mechanisms can dramatically influence the expressive power of the
resulting formal languages, as in the case of the passage from basic chemistry
(that may be modelled by Petri nets) to bio-chemistry (that requires binding
sites, thus becoming Turing-complete) [14]. For this reason, as in other applica-
tions of concurrency, an important foundational issue is the study of dialects for
which qualitative analysis is computable in an effective way and the isolation of
minimal fragments in which it is proved to be impossible.

In this paper, we investigate the boundary between decidability and unde-
cidability of qualitative analysis of biological systems. As a formal model for our



analysis, we consider the κ calculus [3]. κ is a formalism for modelling molecular
biology where molecules are terms with internal state and with sites, bonds are
represented by names that label sites, and reactions are represented by rewriting
rules. For example, EGFR[tk0](1z) represents a molecule of species EGFR that
is not phosphorilated – the internal state tk is 0 – and that is bond to another
molecule – its site 1 is labelled with a name z. The reaction in Fig. 1 defines the
first step of the Receptor Tyrosine Kinase (RTK) growth factor EGF (a dimeric
form of EGF binds two receptors EGFR, thus phosphorylating the tyrosine ki-
nase site – tk switches from 0 to 1). This reaction is rendered by the following κ
rule:

EGF (1x + 2y),EGF (1x + 2z),EGFR(1y),molEGFRtk01z

� EGF (1x + 2y),EGF (1x + 2z),EGFR(1y),EGFR[tk1](1z)
(1)
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Fig. 1. Representation of the κ-rule (1)

A recent contribution turns out to be rather close to the present one [13]. Us-
ing abstract interpretation (abstracting away from the multiplicity of molecules
– always considered unbounded – and from the exact structure of molecular com-
plexes) authors design an efficient algorithm for computing the set of reachable
complexes in a fragment of κ with a local rule set and over-approximating the
set of reachable complexes in the general case.

As a matter of fact, classical problems, such as reachability and coverability,
turn out to be undecidable in κ. Therefore one is either compelled to design
approximated analyses or to study these properties in dialects of κ. We choose the
second direction, thus yielding a number of precise analyses that do not abstract
away either from the multiplicity of molecules or from the exact structure of
complexes.

To this aim, we consider a number of κ dialects that, as we discuss in the
following, take inspiration from biological phenomena such as the molecular self-
assembly [15] or the DNA branch migration [16]. These dialects are ordered into
a lattice by the sublanguage relation – see Figure 2 disregarding the ovals. Let
us unravel the lattice with the restrictions imposed to κ to obtain the sublan-
guages κ−n, κ−d, and κ−d −u . The calculus κ−n follows by removing any form of
destruction of molecules (the molecules never decrease). This fragment naturally
models those systems where molecules always keep their “identity” even when
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they are part of a complex because, for example, they can subsequently dissoci-
ate from the complex. This is the case of polymers, that is chemical structures
obtained by joining monomers that react on complementary surfaces. A simple
polymerisation – the linear bidirectional one, where the complementary surfaces
of monomers are two (that we respectively call l and r in the following) – is
modelled by the following κ−n rules:

A(r),A(l) � A(rx),A(lx) (2)
A(rx),A(lx) � A(r),A(l) (3)

The reaction (2) defines polymerization (the creation of a bond between two
monomers with free complementary surfaces); (3) defines depolymerization (the
destruction of the bond, but not of the monomers).

The additional restriction yielding κ−d is the one that disallows the removal
of bonds (depolymerizations are forbidden). This restriction is inspired by molec-
ular self-assembly, which is a process where molecules, initially unbound, adopt
a defined arrangement. The DNA-origami method is a popular example of self-
assembly that allows to create arbitrary two-dimensional shapes, such as Bor-
romean rings [17], using DNA. In κ−d self-assembly is directly enforced because
bonds cannot be broken. The last dialect along this axis, called κ−d −u , is ob-
tained by considering molecules without internal states. In several cases such
states are not useful. An example is the DNA self-assembly governed by the
Watson-Crick complementary base pairing [18]. We also consider two other sub-
calculi that forbid destructions of molecules and bonds: κ−d−i and κ−d−u−i.
These dialects are obtained from κ−d and κ−d −u , respectively, by restricting re-
ductions to those that never verify the connectedness of reactants. For example,
the polymerization (2) is a reaction of this type. It turns out that the Watson-
Crick complementary base pairing may be defined in κ−d−u−i.

Our analysis also takes into account a different axis. In [19] a new reaction rule
has been introduced, called exchange. According to this reaction, the interaction
between two molecules may flip a bond from one to the other. For example, the
reader may consider the case where a thief molecule T may connect to a third
site of the monomer A and steals the polymer connected to the site l of A:

T (t+ s),A(h)�T (tx + s),A(hx) (4)
T (tx + s),A(hx + ly)�T (tx + sy),A(hx + l) (5)

(reaction 5 is an example of bond flipping). Bond flipping allows us to model
other interesting DNA systems, such as those based on branch migration used
to create, for instance, a nanoscale biped walking along a DNA strand [20].
The calculi including bond flipping are made evident with the superscript +bf .
Finally, we consider also a more liberal form of flipping, called free flipping (see
Figure 3), in which flipping can occur also between two unbound molecules. With
free flipping, the thief molecule T can steal the polymer to a monomer without
previously connecting to it:

T (s),A(ly) � T (sy),A(l) (6)
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For all of the 14 dialects of κ we investigate three problems: the Reachabil-
ity Problem (RP), the Simple Coverability Problem (SCP) and the Coverability
Problem (CP). The RP is the decision problem associated to the existence of a
derivation (simulation) from an initial solution to a target. As shown in [4,12,7],
this problem is of high relevance for validation of formal models of biological sys-
tems. The SCP is the decision problem associated to the existence of a derivation
from an initial solution to a target with given components, regardless of their
multiplicity. SCP is a generalization of the decision problem associated to the
static analysis considered in [13]. Finally, CP is the decision problem associated
to the existence of a derivation from an initial solution to a target that contains
given components: CP is a generalization of RP that can naturally be used to
formulate structural properties of biological networks without need of specifying
an entire target solution.

Our results about the (un)decidability of RP, SCP, and CP in the κ lattice
are illustrated in Figure 2.
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Fig. 2. The κ lattice and the (un)decidability of RP, SCP, CP

The undecidability results are proved by modelling Turing complete for-
malisms in the calculi, while the decidability results are proved by reduction
to decidable properties in finite state systems or Petri-nets. As far as the unde-
cidability results are concerned, the most surprising one is the undecidability of
CP in κ−d −u . We prove that this very poor fragment of κ – in which molecules
have no state and bonds cannot be neither destroyed nor flipped – is powerful
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enough to encode 2 Counter Machines [21], a Turing complete formalism. It is
also interesting to observe that this result about κ−d −u relies on the possibility
to test at least the presence of bonds. In fact, κ−d−u−i is no longer Turing com-
plete because CP is decidable for this fragment (CP allows one to test whether
a certain complex, for instance representing the termination of a computation,
can be produced). While the dialects that include κ−d −u are Turing complete,
many of them retain decidable SCP and/or RP properties. These facts, appar-
ently contrasting with Turing universality of the calculi, are consequences of the
following monotonic properties: reactions cannot decrease either (i) the total
number of molecules in the solution or (ii) the size of the complexes in the so-
lution. In the calculi satisfying the form of monotonicity (i) we show that it is
possible to compute an upper-bound to the number of molecules in the solutions
of interest for the analysis of RP. In this way, we reduce our analysis to a finite
state system. For the calculi satisfying the form of monotonicity (ii) we show
that it is possible to compute an upper-bound to the size of the complexes in
the solutions of interest for the analysis of SCP. In this case, even if it is not
possible to reduce to a finite state system (because there is no upper-bound to
the number of instances of the complexes in the solutions of interest), we can
reduce to Petri-nets in which reachability and coverability are decidable.

The paper is organised as follows: Section 2 recalls κ, its fragments and
the needed terminology. Section 3 discusses the separation results between the
fragments of κ. Section 4 discusses related contributions in literature. Section 5
concludes with few final remarks. Due to space limitation this paper does not
include the details of some of the proofs, that can be found in [22] or in an
appendix that we include for the reviewer convenience.

2 Preliminaries

This section introduces κ and its dialects, together with the terminology that is
necessary in the sequel.

κ-calculi. Two countable sets of species A,B,C, . . ., and of bonds x, y, z, . . . are
assumed. Species are sorted according to the number of sites a, b, c, . . . and fields
h, i, j, . . . they possess.

Sites may be either bound to other sites or unbound, i.e. not connected
to other sites. The configuration of sites are defined by partial maps, called
interfaces and ranged over by σ, ρ, . . . . The interfaces associate to sites either a
bond or a special empty value ε, which models the fact that the site is unbound.

For instance, if A is a species with three sites, (2 7→ x; 3 7→ ε) is one of its
interfaces. This map is written 2x + 3 (the ε is always omitted). We notice that
this σ does not define the state of the site 1, which may be bound or not. Such
(proper) partial maps are used in reaction rules in order to abstract from sites
that do not play any role in the reactions (similar for evaluations, see below). In
the following, when we write σ+σ′ we assume that the domains of σ and σ′ are
disjoint. The functions dom(·) and ran(·) return the domain and the range of a
function.
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Fields represent the internal state of a species. The values of fields are also
defined by partial maps, called evaluations, ranged over by u, v, . . . . For instance,
if A is a species with three fields, {1 7→ 5; 2 7→ 0; 3 7→ 4}, shortened into 15 +20 +
34, is a possible evaluation. We assume there are finitely many internal states,
that is every field is mapped into a finite set of values. As for interfaces, u+ v,
we implicitly assume that the domains of u and v are disjoint.

Definition 1. A molecule A[u](σ) is a term where u and σ are a total evaluation
and a total interface of A.
Solutions, ranged over by S, T , . . . , are defined by: S ::= A[u](σ) | S, S.
Bonds in solutions occur at most twice; in case bonds occur exactly twice the
solution is proper.
A pre-solution is a sequence of terms A[u](σ) where u and σ are partial functions
and bonds occur at most twice. A pre-solution is proper if (similarly as before)
bonds occur exactly twice. The set of bonds in S is denoted bonds(S).

In the rest of the paper the composition operator “,” is assumed to be asso-
ciative, so (S, S′), S′′ is equal to S, (S′, S′′) (therefore parentheses will be always
omitted).

Let σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if σ(i) 6= ε then σ(i) = σ′(i)
(the two interfaces may differ on sites mapped to the empty value ε by σ as σ′

may map such sites to bonds).
Reactions have the shape L � R, where L and R are pre-solutions called

reactants and products, respectively. The general shape of reactions is defined in
the next definition. Following [19], we extend the definition of [3] with exchange
reactions, thus the calculus is an extension of the κ-calculus.3

Definition 2. Reactions of the κ+ff calculus – the κ calculus with free flipping
rules – are either creations C, or destructions D, or exchanges E.
The format of creations is

A1[u1](σ1), . . . , An[un](σn)
� A1[u′1](σ′1), . . . , An[u′n](σ′n), B1[v1](φ1), . . . , Bk[vk](φk)

where, for every i, dom(ui) = dom(u′i), σi ≤ σ′i, and vi and φi are total. Reac-
tants and products are proper.
The format of destructions is

A1[u1](σ1), . . . , An[un](σn) � Ai1 [u′i1 ](σ′i1), . . . , Aim [u′im ](σ′im)

where i1, . . . , im is an ordered sequence in [1 . . . n], for every ij, dom(uij) =
dom(u′ij ), σij ≥ σ′ij , and if ij /∈ {i1, . . . , im} then σij is total. Reactants and
products are proper.
The format of exchanges is

A[u](ax + σ),B [v](b+ ρ) � A[u′](a+ σ),B [v′](bx + ρ)

where ran(σ) = ran(ρ).
3 Another difference with [3] is that we allow newly produced molecules unbound from

existing ones.
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Creations may change state, produce new bonds between two unbound sites,
or synthesise new molecules. Destructions behave the other way around. Ex-
changes are reminiscent of the π calculus because they define a migration of a
bond from one reactant to the other. We distinguish two types of exchanges:
the one occurring between connected molecules, called (connected) bond flip-
ping, and the one occurring between disconnected molecules, called free (bond)
flipping. These are illustrated below:
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Fig. 3. Bond flipping and free flipping

The operational semantics of κ+ff calculus uses the following two definitions:

– the structural equivalence between solutions, denoted ≡, is the least one
satisfying (we remind that solutions are already quotiented by associativity
of “,”):
• S, T ≡ T, S;
• S ≡ T if there exists an injective renaming ı on bonds such that S = ı(T ).

– A1[u1 + u′1](σ1 ◦ ı + σ′1), . . . , An[un + u′n](σn ◦ ı + σ′n) is an (ı, u′1, · · · , u′n,
σ′1, · · · , σ′n) instance of A1[u1](σ1), . . . , An[un](σn) if ı is an injective renam-
ing on bonds and the maps uj + u′j and σj ◦ ı+ σ′j are total with respect to
the species Aj .

Definition 3. The reduction relation of the κ+ff calculus, written →, is the
least one satisfying the rules:

– let L � R be a reaction of κ+ff , S be an (ı, ũ, σ̃)-instance of L, and T be an
(ı, ũ′, σ̃′)-instance of R. Then S → T ;

– let S→T and (bonds(T ) \ bonds(S)) ∩ bonds(R) = ∅, then S,R→ T,R;
– let S ≡ S′, S′ → T ′, and T ′ ≡ T , then S → T .

The κ+ff calculus groups several sub-calculi that have in turn simpler formats
of rules. We have already depicted in Figure 2 the fragments we study. We move
from κ+ff along two different axes:
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1. we restrict reactions by letting im = n in destructions (forbidding cancel-
lations of molecules), the superscript −n; removing destructions, the su-
perscript −d; removing destructions and considering species with emptyset
of sites (removing fields), the superscript −d − u; removing destructions,
fields, and such that no bond occurs in the left-hand side of creations and
exchanges, except the flipping one, the superscript −d− u− i;

2. we restrict exchanges by allowing bond-flipping only, the superscript +bf ,
and by removing exchanges, no superscript +bf or +ff .

Some of the combinations are empty. For example, a calculus without checks of
bonds and with cancellation of bonds is meaningless as, in order to remove one
bond, it is necessary to test its presence first.

The reader may refer to the introduction for formalisations of relevant bio-
logical systems written in these calculi.

Decision problems for qualitative analysis. A first basic qualitative prop-
erty is whether a solution eventually produces “something relevant” or not.
Clearly this “something relevant” can be defined in a variety of ways. In this
paper we consider its formalisation in terms of reachability and coverability, two
standard properties which have been extensively investigated in many concurrent
formalisms. Few preliminary notions are required.

Definition 4 (Complex). Given a proper solution, a complex is a sub-solution
that is connected (there is a path of bonds connecting every pair of molecules
therein) and proper. Two complexes in a solution are equal if they are struc-
turally equivalent.

Let S(S) be the set of different complexes in S; let also→∗ be the transitive and
reflexive closure of →.

Definition 5. RP: the reachability problem of T from a proper solution S
checks the existence of R such that S →∗ R and R ≡ T ;

SCP: the simple coverability problem of T from a proper solution S checks the
existence of R such that S →∗ R and S(R) = S(T ) and R ≡ T, T ′, for some
T ′;

CP: the coverability problem of T from a proper solution S checks the existence
of R such that S →∗ R and R ≡ T, T ′, for some T ′.

3 (Un)Decidability Results for κ dialects

In this section we study the (un)decidability of RP, SCP, and CP in the κ lattice
of Figure 2. The overall results represented in that figure are the consequences
of theorems that we detail in the remainder of this section. For each decidability
region – one for RP, one for SCP, and one for CP – we prove that the corre-
sponding property is decidable in the top language of the region and undecidable
in the bottom language(s) among those not included in the region.

We separate the presentation of our results in two subsections, the first one
is devoted to decidability, the latter to undecidability.
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3.1 Decidability results

The proofs of decidability follow by reduction to decidable problems in either
finite state systems or Place/Transition Petri nets (P/T nets). These nets are
an interesting infinite state model for the representation and analysis of parallel
processes because they retain several decidability problems, such as reachability
or coverability [23]. We recall here the basic notation, for a full description of
this computational model see [24].

Definition 6. A P/T net is a tuple N = (S, T, F,m0), where S and T are finite
sets, called places and transitions, respectively, such that S ∩ T = ∅. A finite
multiset over the set S of places is called a marking, and m0 is the initial mark-
ing. F is the transition function associating to each transition t two markings
called the pre-set and the post-set of t.

The marking m of a P/T net can be modified by means of transitions firing:
a transition with pre-set m′ and post-set m′′ can fire if m′ ⊆ m; upon transition
firing the new marking of the net becomes (m \m′) ∪m′′ where \ and ∪ are the
difference and union operators for multisets, respectively.

Our first positive result is for the κ+ff −n fragment.

Theorem 1. RP is decidable in κ+ff −n .

Proof. We reduce RP to the reachability problem in a finite state system. Let
R be a set of κ+ff −n reactions and let S and T be two proper solutions. We
notice that, in order for S →∗ T , all intermediary solutions traversed by the
computation must have a number of molecules which is less or equal to the
number nT of molecules in T . This is because in κ+ff −n it is not possible to
delete molecules.

Let A be the set of species occurring either in S or in a rule of R. Let
also setT (A) be the set of (proper) solutions with a number of molecules less
than nT . This set is finite up-to structural equivalence because the number of
sites and fields of species is finite, the values of fields is finite, and the possible
combinations of bonds is finite, as well. By mapping every solution R to its
canonical representative in the structural equivalence class, called [R], we can
build a finite state system FSST such that, by Definition 3, given two solutions in
setT (A), R → R′ if and only if [R]→ [R′]. We conclude the proof by observing
that S →∗ T if and only if [S] →∗ [T ], and this latter property is decidable in
FSST . ut

The proof technique adopted above cannot be used to prove the decidability
of the SCP problem for a given target T in κ+bf −d . As a matter of fact, SCP
allows one to specify only lower bounds, and no upper bounds, to the number
of instances of complexes (thus also of the molecules) in the target solution.
For this reason finite state systems are not sufficiently expressive to model the
computations of interest. Nevertheless, we can move to P/T nets because it is
possible to compute a finite set SETT (A) containing the kinds of complexes to
be considered in the reachability analysis. This set turns out to be finite since
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in κ+bf −d the size of one complex can never decrease and the size of the biggest
complex in T fixes an upper bound to the size of the complexes in SETT (A).
The idea is then to map each complex in SETT (A) into one place, and define
transitions according to the considered reactions. Hence we have the following
theorem:

Theorem 2. SCP is decidable for κ+bf −d .

The P/T net described above cannot be used to prove the decidability of the
CP problem for a given target T in κ+bf −d . In fact, according to CP , the target
T indicates only part of the complexes to be reached. Thus, the reached solution
that contains the target complexes, could also contain other complexes of size
greater than the size mT of the biggest complex in T . Nevertheless, since in κ−d−i

bond names cannot be tested in the reactants of a reaction, we can remove from
the P/T net representation of those complexes the structure of their bonds, and
thus consider only the states and the free sites of their molecules. More precisely,
the P/T net described above is now extended with places Â[u](σ) (for every
species A, every evaluation u, and with partial functions σ mapping every site
to ε) used to represent the molecules in complexes of size greater than mT . Due
to the finiteness of species, evaluations, and sites we have that this additional set
of places is finite. Moreover the set of transitions is straightforwardly extended
to cope with the new places. Hence it is possible to prove the following:

Theorem 3. CP is decidable in κ−d−i.

3.2 Undecidability results

Our undecidability results follow by rediction to undecidable problems such as
the halting problem for 2 Counter Machines (2CMs), which is a Turing equiva-
lent formalism. A 2CM [21] is a machine with two registers R1 and R2 holding
arbitrary large natural numbers and a program P consisting of a finite sequence
of numbered instructions of the following type:

– j : Succ(Ri): increments Ri and goes to the instruction j + 1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1

and goes to the instruction j + 1, otherwise jumps to the instruction l;
– j : Halt: stops the computation and returns the value in the register R1.

A state of the machine is given by a tuple (j, v1, v2) where i indicates the next
instruction to execute (the program counter) and v1 and v2 are the contents of
the two registers. The user has to provide the initial state of the machine. In the
rest of the paper, we consider 2CMs in which registers are initially set to zero
and where the instruction 0 is Halt. Our first negative result is for reachability
of a solution in κ.

Theorem 4. RP is undecidable in κ.

Proof. We reduce the termination problem for 2CMs to RP. Let M be a 2CM
with n instructions. To encode it in κ we use five species:
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1. P is the program counter; it retains one field with values in [0, . . . , n] and
no site;

2. Z1 and Z2, both with one site, represent the value 0;
3. R1 andR2, both with two sites, represent the unity to be added to or removed

from registries.

Let j, l ∈ [0..n] and let i ∈ {1, 2}. The encoding [[·]]κ is defined as follows:

[[j : Succ(Ri)]]κ =
{
P [1j ], Zi(1) � P [1j+1], Zi(1x), Ri(1x + 2)
P [1j ], Ri(2) � P [1j+1], Ri(2x), Ri(1x + 2)

[[j : DecJump(Ri, l)]]κ =

P [1j ], Zi(1) � P [1l], Zi(1)
P [1j ], Zi(1x), Ri(1x + 2) � P [1j+1], Zi(1)
P [1j ], Ri(2x), Ri(1x + 2) � P [1j+1], Ri(2)

[[j : Halt]]κ =

P [1j ], Z1(1), Z2(1) � P [10], Z1(1), Z2(1)
P [1j ], Zi(1x), Ri(1x + 2) � P [1j ], Zi(1)
P [1j ], Ri(2x), Ri(1x + 2) � P [1j ], Ri(2)

It turns out that the 2CM halts if and only if the solution P [10], Z1(1), Z2(1) is
reachable from the initial state. Therefore we conclude that RP is undecidable
in κ. ut

The encoding of 2CMs described above does not apply to κ−n because in
this dialect molecules cannot be removed. Nevertheless, we can rephrase the
decrement operation of the encoding above by breaking the link between the
two last molecules Ri (or the molecules Zi and Ri in case the register holds 1).
Hence we have the following theorem:

Theorem 5. SCP is undecidable in κ−n.

We observe that, without using fields and destructions, as in κ−d −u , it is
not possible to reuse the encoding scheme above. Nevertheless, using only cre-
ations we can model registers with grids containing two classes of molecules:
the molecules of the first class represent units in the register, while those of
the second class are used to replace units during decrement instructions. Given
the register Ri holding n, the corresponding grid contains in the topmost row
n molecules of the first class. More precisely, the encoding of the increment
increases the topmost row of the grid with a molecule of the first class. The
encoding of the DecJump instruction is more complex: The idea is to copy the
topmost row of the grid replacing, if possible, one molecule of the first class with
one of the second class. If this replacement occurs the subsequent instruction is
activated, otherwise a jump is performed. Finally, the encoding of the Halt in-
struction simply produces the Halt molecule. Given this construction it follows
that:

Theorem 6. CP is undecidable in κ−d −u .
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The previous encoding of 2CMs does not allow us to prove the undecidabil-
ity of SCP in κ+ff −d −u because the exact structure of the grids representing
the two registers at the end of the computation is unknown as it depends on
the number of increment and decrement instructions that are executed. Nev-
ertheless, in κ+ff −d −u we can use free flipping to “destruct”, at the end of
the computation, the grids obtaining an unknown amount of complexes with a
known structure. More precisely, we extend the previous construction in such
a way that the molecule Halt triggers the following computation: one molecule
is produced for each end of each bond in the grids, and all those ends are then
passed to such new molecule. Thus we can state the following theorem:

Theorem 7. SCP is undecidable in κ+ff −d −u .

4 Related work

In this section we discuss some related works by first focusing on formal models
specifically proposed for describing biological systems and then considering more
generally the fields of term/graph rewriting and process calculi.

As we said in the Introduction, the closest work to this contribution is [13]
where a syntactic restriction entailing a form of SCP is proposed. This restriction
– κ with local rule sets – is orthogonal to the ones proposed in this paper.
It does not cover the reachability analysis of finite structures with recurrent
patterns, such as finite polymers. In these cases, the analysis in [13] yields an
over-approximation of the reachable complexes. How much reasonable is this
over-approximation is not clear.

Apart from κ, the literature reports several proposals for describing (and
reasoning on) biological systems, which use a variety of formal tools, including
process calculi, term/graph rewriting, (temporal) logic, and rule based languages.
However, the expressive power of most of these formalisms is the one of Petri
nets. Therefore, the decidability of reachability and coverability problems is an
immediate consequence of the corresponding results on Petri nets. Formalisms
whose expressive power is similar to κ, miss results analogous to those con-
tained in this paper. For example, the biochemical abstract machine Biocham
[6,8] is a rule-based model similar to κ. However reactions are constrained to
specify completely the reagent solution, unlike κ where reactions partially spec-
ify reactants and products. It is worth noticing that the Biocham constraint do
not allow finite descriptions of rules creating polymers of arbitrary length. As a
consequence, when considering purely qualitative aspects, i.e. removing kinetic
quantities, the Biocham can be reduced to a classical Petri net [6].

Another rule-based model for describing and analysing biological processes is
Pathway Logic [5,11]. This model is based on rewrite logic, which allows to de-
scribe biological entities and their relations at different levels of abstractions and
granularity by using elements of an algebraic data type (to describe states) and
rewrite rules (to describe transitions between states and therefore behaviours).
Even though Pathway Logic models of biological processes are developed in
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Maude system, which is Turing complete, yet the analysis of biological systems
uses the, so called, Pathway Logic Assistant for representing models in terms of
Petri Nets [11]. Therefore, also in this case, the relevant decidability results de-
rive from the analogous results on Petri nets. This is the case also for the model
used in [9]. A different model, based on graph transformation has been proposed
by Blinov et al. [1]. However, in this case, the relevant properties (e.g. member-
ship of a given species in a reaction network) are semi-decidable and we are not
aware of suitable restrictions on the general model that ensure decidability for
some of them.

As regards the fields of term/graph rewriting and process calculi, we have
not find results from which we can derive immediately those we have obtained
for κ. In particular, for term rewriting systems, the reductions to Petri net
reachability can be applied to decide reachability for associative-commutative
ground term rewriting (AC) [25] and for Process Rewrite Systems (PRS) [26].
However, AC and PRS are more expressive than Petri nets, but strictly less
expressive than Turing machines [26]. On the other hand our positive results are
given for fragments of κ that are Turing-complete. As such, the set of derivatives
of a κ solution may not be a regular set of terms. Thus, decision procedures based
on tree automata like those proposed in fragments of non-ground term rewriting
[27,28,29,30] cannot be applied to the κ-lattice.

Decidability results for reachability in process calculi like Mobile Ambients,
Boxed Ambients, and Bio-ambients are given in [31,32,33,34,35]. These results
are obtained for fragments (or for weak semantics) that ensure the monotonicity
of the generated ambient structures. In addition they consider process calculi
(Mobile/Boxed/Bio Ambients) which operate on tree-like structures and without
fresh name generation. This contrasts with the dialect of κ of Figure 2, that
operate on (possibly cyclic) graph-structures and admit dynamic creation of
new names (bonds).

Concerning Graph Rewriting Systems (GRS) there exist folk theorems about
reachability that state its undecidability in full-fledged GRS and its decidability
for GRS in which rules do not add new nodes. We are not aware of (un)decida-
bility results for decision problems like reachability and coverability in graph
rewriting systems with features similar to those considered in our κ-lattice. The
only specific results we are aware of are those given for reachability in context-
free graph grammars [36] and for coverability in GRS that are well-structured
with respect to the graph minor relation [37]. However, we consider here more
general rules than those of context-free graph grammars. Furthermore, we do
not see how to apply the decision procedure proposed in [37] to languages in the
κ-lattice that, in general, do not enjoy strict compatibility with respect to the
graph minor ordering.

5 Conclusions

We have investigated three decidability problems for several κ dialects. These
problems allow one to check whether, starting from a given initial solution, a
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sequence of reactions described in the κ formalism produces a solution having
some specific features. Hence our results, summarized in Figure 2, can be seen
as a first step in the direction of qualitative analysis of κ calculus.

Besides presenting techniques for qualitative analysis, we also characterise
the computational power of κ-like biologically inspired models. In this respect,
the main result is that we can remove bond and molecule destruction and the
internal state of molecules from κ without losing Turing completeness On the
contrary, if we remove the possibility to test the presence of one bond in a
reaction, the calculus is no longer Turing universal.

Our work can be extended along at least two lines. First, several other frag-
ments of κ can be considered for a similar investigation. Notably nanoκ that
admits at most two reactants. In particular, our encoding of a 2CM into κ−d−i

uses ternary (at the left hand side) rules and we conjecture that a 2CM cannot
be encoded faithfully into κ−d−i with binary rules only.

Second, there are several other interesting properties to investigate, for exam-
ple a form of coverability where one admits complexes strictly larger than the
original ones. In this perspective, we plan to exploit the theory of well struc-
tured transition systems [38] as done in [37] to prove decidability of coverability
w.r.t. the graph minor relation in classes of graph rewriting systems.
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A Decidability results: details of the proofs

In order to prove Theorem 2 we need the following preliminary result stating
that in κ+bf −d the connectedness of two molecules can never be broken.

Lemma 1. Let S and T be two proper solutions of the κ+bf −d calculus such
that S → T . If there exists a path of bonds connecting two molecules in S – i.e.
the two molecules are connected – then the two molecules are still connected in
T (possibly with a different path).

Proof. Bonds can only be created and flipped in κ+bf −d . In particular, in this
last case, a flip occurs if the affected molecules – not only the reactants – are
already connected (see the top picture of Figure 3). This entails the property of
the lemma. ut

Theorem (2). SCP is decidable for κ+bf −d .

Proof. We reduce to the target marking reachability problem for P/T nets, which
is decidable [31]. This problem amounts to checking, given a P/T net P and a
target marking mt, whether a marking m is reachable in P such that m(p) = 0
for every place p such that mt(p) = 0, and m(p′) ≥ mt(p′) for every other place
p′.

Let R be a set of κ+bf −d reactions and S, T and R be proper solutions such
that S(T ) = S(R) and R ≡ T,R′, for some solution R′. Let nT be the maximum
number of molecules of a complex in T .

As a consequence of Lemma 1, if S →∗ R, then the complexes occurring
in every intermediary solution traversed by the computation have a number of
molecules smaller or equal to nT .

Let A be the set of species occurring either in S or in a rule of R, and let
SETT (A) be the set of complexes composed of at most nT molecules belonging
to the species in A. As in the proof of Theorem 1, this set SETT≡(A) is finite if
taken up-to structural equivalence.

We define the following P/T net. The places are the elements of SETT≡(A).
We build the transitions in two steps. Given a rule ρ : L � R, we first define
REDρ as the least set containing all reductions S1, · · · , Sn → S′1, · · · , S′m such
that:

i) Si and S′j ∈ SETT≡(A) for every i and j;
ii) the reduction is obtained by applying Definition 3 that instantiates ρ with

a proof-tree PT,
iii) for every i, Si is directly involved in the reduction (i.e. at least one molecule

of its is an instance of a term in L in the unique leaf of PT).

Condition (iii) ensures that set REDρ is finite up to structural equivalence. In-
deed, we have that n is less or equal than the number of terms in L, m is less
or equal than the number of terms in R, and SETT≡(A) is finite. For each rule ρ
and each reduction S1, · · · , Sn → S′1, · · · , S′m in REDρ we build a P/T transition
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with pre-set [S1], . . . , [Sn] and post-set [S′1], . . . , [S′m]. Let mS and mT be the
initial and final markings corresponding to S and T , respectively.

The above P/T net faithfully reproduces the possible computations of S that
traverse solutions retaining complexes composed of at most nT molecules. This
allows us to reduce SCP of S to the target marking reachability of mT in the
above P/T net, which is decidable. ut
Theorem (3). CP is decidable in κ−d−i.

Proof. We reduce to the coverability problem in P/T net. Let R be a set of
κ−d−i reactions and S, T and R be proper solutions such that R ≡ T,R′ for
some solution R′. Let nT be the maximum number of molecules of a complex in
T .

As in the proof of Theorem 2, let A be the set of species occurring either in
S or in a rule of R, and let SETT (A) be the set of complexes composed of at
most nT molecules belonging to the species in A. The set SETT≡(A) is finite.

We define the following P/T net. Places are elements of SETT,+≡ (A) that
extends SETT≡(A) with the places Â[u](σ), for every species A ∈ A, every evalu-
ation u, and with partial functions σ mapping every site to ε (properly speaking,
Â is not a molecule because σ cannot be partial). Note that the number of places
is finite because the additional places Â[u](σ), with respect to the P/T net al-
ready discussed in Theorem 2, is finite (A is taken from the finite set A, the
possible evaluations u are finite and similarly for σ).

Transitions are defined in two steps. Given a rule ρ : L � R, we first define
RED+

ρ as the least set containing all reductions S1, · · · , Sn → S′1, · · · , S′m such
that:

i) Si and S′j are complexes composed only of molecules belonging to species in
A (possibly with size greater than nT );

ii) the reduction is obtained by applying Definition 3 that instantiates ρ with
a proof-tree PT,

iii) for every i, Si is directly involved in the reduction (i.e. at least one molecule
of its is an instance of a term in L in the unique leaf of PT).

Note that, unlike the proof of Theorem 2, RED+
ρ can be infinite as we do not

impose any restriction to the sizes of Si. Nevertheless, it is possible to group
transitions in RED+

ρ into finitely many different groups. For every S1, · · · , Sn →
S′1, · · · , S′m in RED+

ρ , we let a transition with pre-set given by the following
places

– [Si] if Si has no more than nT molecules;
– Â1 [u1](σ1), · · · , Âm′ [um′ ](σm′) if Si has more than nT molecules and the

molecules of Si that participate to the reduction (the ones that instantiate
the terms in L in the unique leaf of PT) are

A1 [u1](σ1 + ρ1), · · · ,Am′ [um′ ](σm′ + ρm)

with ε 6∈ ran(ρi) and {ε} = ran(σi)
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and post-set given by the following places

– [S′j ] if S′j has no more than nT molecules;

– Â1 [u1](σ1), · · · , Âm′ [um′ ](σm′) if S′j has more than nT molecules and the
molecules of S′j that participate to the reduction (the ones that instantiate
the terms in R in the unique leaf of PT) are

A1 [u1](σ1 + ρ1), · · · ,Am′ [um′ ](σm′ + ρm)

with ε 6∈ ran(ρi) and {ε} = ran(σi).

The set of transitions is finite because both the pre-sets and the post-sets use
places in SETT,+≡ (A) and their cardinality is less or equal to the number of terms
in L and R, respectively.

Let mS and mT be the initial and final markings corresponding to S and T ,
respectively. This P/T net does not faithfully represent all the complexes that
can be produced by computations starting from S. In fact, while every complex
with cardinality less than nT is represented by a place, this is not the case for
complexes bigger than nT . When such a complex is created, the net removes
the structure of bonds, and considers only the states and the free sites of its
molecules. However, this information is sufficient for the coverability analysis in
the κ−d−i-calculus because, by Lemma 1, the size of a complex cannot decrease,
thus complexes larger than nT cannot directly produce the complexes of interest
for the analysis but can only trigger reactions necessary in order to reach such
complexes. As in the κ−d−i-calculus the bond names cannot be tested in the
reactants of a reaction, the loss of this information for large structures is not
problematic.

This construction allows us to reduce the coverability problem for κ−d−i to
the coverability of the marking mT in P/T net, which is decidable. ut

B Undecidability results: details of the proofs

Theorem (5). SCP is undecidable in κ−n.

Proof. We reduce the termination problem for 2CMs to SCP in κ−n. For this,
we modify the encoding of 2CMs used for κ in the previous theorem as follows:

– a binary field to the species R1 and R2 is added. When this field is zero, the
molecule is considered garbage, otherwise it is a valid one.

Without loss of generality, we assume that the two registers are incremented at
least once.

The encoding [[·]]κ−n is defined in Figure 4.
Namely, the increment refines the previous encoding by setting to 1 the field

of the new R; the decrement, rather than removing one molecule at the end of
the register, which is not allowed in κ−n, removes the bond and resets the field
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[[j : Succ(Ri)]]κ−n =
P [1j ], Zi(1) � P [1j+1], Zi(1

x), Ri[1
1](1x + 2)

P [1j ], Ri(2) � P [1j+1], Ri(2
x), Ri[1

1](1x + 2)

[[j : DecJump(Ri, l)]]κ−n =8>>>><>>>>:
P [1j ], Zi(1) � P [1l], Zi(1)
P [1j ], Zi(1

x), Ri[1
1](1x + 2) �

P [1j+1], Zi(1), Ri[1
0](1 + 2)

P [1j ], Ri(2
x), Ri[1

1](1x + 2) �
P [1j+1], Ri(2), Ri[1

0](1 + 2)

[[j : Halt]]κ−n =8>>>><>>>>:
P [1j ], Z1(1), Z2(1) � P [10], Z1(1), Z2(1)
P [1j ], Zi(1

x), Ri[1
1](1x + 2) �

P [1j ], Zi(1), Ri[1
0](1 + 2)

P [1j ], Ri(2
x), Ri[1

1](1x + 2) �
P [1j ], Ri(2), Ri[1

0](1 + 2)

Fig. 4. Encoding 2CMs in κ−n.

to zero; the halt operation turns every molecule R to garbage. We now observe
that any solution that contains the complexes in the target solution

T = P [10], Z1(1), Z2(1), R1[10](1 + 2), R2[10](1 + 2)

encodes a halting configuration. Thus, termination of a 2CM can be reduced to
SCP for the corresponding κ−n encoding and for the target solution T . ut
Theorem (6). CP is undecidable in κ−d −u .

Proof. We define an encoding of 2CMs by using constructions on species with
emptysets of fields. Instructions are implemented by species Pj with a site 1 that
may be bound to a molecule of species D. When this happens, the instruction is
disabled. A further species Halt with no sites will represent a terminating state.
Registers are implemented by grids of increasing height (see Figure 5).

The first column consists of Zi molecules with three sites; the other nodes
of the grid, called register molecules, are either Ri,j molecules or NVi,j or NV ′i,j
molecules, i ∈ {1, 2} and j ranging over instruction numbers, all retaining 4 sites.
The meaningful part of the grid is the topmost row: the number of molecules Ri,j
therein represents the value of the corresponding register while the other rows
represent previous values (we add a new row when performing a decrement). For
instance, the register in Figure 5 contains the value 1 obtained after two incre-
ments –performed by the instruction with index 3–, two decrements –performed
by the instruction with index 4–, and a subsequent increment –performed by the
instruction with index 3.

19



!"#

!"#

!"#

$"%&#

$"%'#

()*"%'#

$"%&#

()*"%'#

()"%'# $"%&#

"#

&#
+#

"#

"#

&#
+#

"#

"#

"#

'#

'# '#

'#

"#

"#

"#

"#

+#

+#

+#

+#

&#

&# &#

&#

Fig. 5. Grid representing the register R1.

The encoding of [[j : Inc(Ri,j)]]κ−d−u increases the topmost row of the grid
with a molecule Ri,j , it is defined by the three rules in Figure 6

Pj(1), Zi(1) � Pj(1
x), D(1x), Zi(1

y),
Ri,j(1

y+ 2 + 3 + 4), Pj+1(1)
Pj(1), Ri,j′(2 + 3) � Pj(1

x), D(1x), Ri,j′(2
y + 3),

Ri,j′(1
y+ 2 + 3 + 4), Pj+1(1)

Pj(1), NVi,j′(2 + 3) � Pj(1
x), D(1x), NVi,j′(2

y+ 3),
Ri,j′(1

y+ 2 + 3 + 4), Pj+1(1)

Fig. 6. Encoding of increment instructions [[j : Inc(Ri,j)]]κ−d−u in κ−d −u .

The encoding of [[j : DecJump(Ri, l)]]κ−d−u is more complex. The key idea
is to copy the topmost row of the grid (from left to right according to the
graphical representation of the grid in Figure 5) reducing, if possible, the number
of molecules Ri,j′ . This is obtained replacing the first encountered Ri,j′ molecule
with the molecule NV ′i,j . If there is no such molecule available, all molecules in
the new topmost row will be of species NVi,j (i.e. the kind of molecule used to
copy molecules of species NVi,j′ or NV ′i,j′). The copy records j in the second
index of the register molecules: in this way, when the copy is finished (i.e. the
new instance of Zi is produced) it is possible to release the molecule representing
the next instruction, that is Pj+1 in case the decrement succeeded, Ps otherwise.

The encoding of a decrement [[j : DecJump(Ri, l)]]κ−d−u is reported in Fig-
ure 7.

The encoding [[j : Halt]]κ−d−u simply produces the Halt molecule and is
defined by the rule

Pj(1) � Pj(1x), D(1x), Halt

The encoding satisfies the following property: the 2CM halts if and only if the
solution P1(1), Z1(1 + 2 + 3), Z2(1 + 2 + 3) in the corresponding κ−d −u encoding
can produce molecule Halt . Thus, termination of 2CMs is reduced to CP with
target solution T = Halt . Therefore the undecidability of CP in κ−d −u . ut
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Pj(1), Zi(1) � Pj(1
x), D(1x), Zi(1

y), Pl(1)
Pj(1), Ri,j′(2 + 3) � Pj(1

x), D(1x), Ri,j′(2 + 3y), NV ′i,j(1 + 2 + 3 + 4y)
Pj(1), Xi,j′(2 + 3) � Pj(1

x), D(1x), Xi,j′(2 + 3y), NVi,j(1 + 2 + 3 + 4y)
(X ∈ {NV,NV ′})

Xi,j(1 + 4x), Yi,j′(1
y + 3x),Wi,j′(2 + 4y) � Xi,j(1

z + 4x), Yi,j′(1
y + 3x),

Wi,j′(2
u + 4y), Xi,j(1 + 2z + 3 + 4u)

(X,W ∈ {NV,NV ′}, Y ∈ {NV,NV ′})
NVi,j(1 + 4x), Yi,j′(1

y + 3x), Ri,j′(2 + 4y) � NVi,j(1
z + 4x), Yi,j′(1

y + 3x),
Ri,j′(2

u + 4y), NV ′i,j(1 + 2z + 3 + 4u)
(Y ∈ {NV,NV ′})

NV ′i,j(1 + 4x), Yi,j′(1
y + 3x), Ri,j′(2 + 4y) � NV ′i,j(1

z + 4x), Yi,j′(1
y + 3x),

Ri,j′(2
u + 4y), Ri,j(1 + 2z + 3 + 4u)

(Y ∈ {NV,NV ′})
Ri,j(1 + 4x), Yi,j′(1

y + 3x), Ri,j′(2 + 4y) � Ri,j(1
z + 4x), Yi,j′(1

y + 3x),
Ri,j′(2

u + 4y), Ri,j(1 + 2z + 3 + 4u)
(Y ∈ {R,NV,NV ′})

Ri,j(1 + 4x), Yi,j′(1
y + 3x), Xi,j′(2 + 4y) � Ri,j(1

z + 4x), Yi,j′(1
y + 3x),

Xi,j′(2
u + 4y), NV ′i,j(1 + 2z + 3 + 4u)

(X ∈ {NV,NV ′}, Y ∈ {R,NV,NV ′})
Ri,j(1 + 4x), Yi,j′(1

y + 3x), Zi,j′(2
y + 3) � Ri,j(1

z + 4x), Yi,j′(1
y + 3x),

Zi,j′(2
y + 3u), Zi,j(1

u + 2z + 3), Pj+1(1)
(Y ∈ {R,NV,NV ′})

NV ′i,j(1 + 4x), Yi,j′(1
y + 3x), Zi,j′(2

y + 3) � NV ′i,j(1
z + 4x), Yi,j′(1

y + 3x),
Zi,j′(2

y + 3u), Zi,j(1
u + 2z + 3), Pj+1(1)

(Y ∈ {R,NV,NV ′})
NVi,j(1 + 4x), Yi,j′(1

y + 3x), Zi,j′(2
y + 3) � NVi,j(1

z + 4x), Yi,j′(1
y + 3x),

Zi,j′(2
y + 3u), Zi,j(1

u + 2z + 3), Pl(1)
(Y ∈ {R,NV,NV ′})

Fig. 7. Encoding of decrement instructions [[j : DecJump(Ri, l)]]κ−d−u in κ−d −u .
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Theorem (7). SCP is undecidable in κ+ff −d −u .

Proof. We proceed as described in Theorem 6 assuming, without loss of gen-
erality as in Theorem 5, that the two registers are incremented at least once.
The new construction adds rules that come into play in case the Halt molecule
is produced. More precisely, the molecule Halt triggers the generation of new
molecules belonging to a new species Des having only one site. The aim of these
molecules is to receive on this site, via free flipping, an end of one bond in the
grids representing the registers at the end of the computation. This is obtained
considering a set of reactions in which a Des molecule can be engaged with one
of the molecules of the grids: the effect of these reactions is to move a bond from
the latter to the Des molecule. Following this approach, we guarantee that a so-
lution can be reached such that the unique complexes with size strictly greater
than 1 can be of two possible kinds: either composed by exactly two instances
of Des molecules, or composed by an instruction Pj and a corresponding D
molecule. ut
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