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Abstract. We present uniformly four related models for the represen-
tation of biochemical systems recently proposed in the literature in dif-
ferent publications. Namely, we consider Stochastic Automata Collec-
tives (SAC) [2], Stochastic Polyautomata Collectives (SPC) [2], Chemical
Ground Form (CGF) [3], and Biochemical Ground Form (BGF) [4].

1 Introduction

The aim of this paper is to provide a unified introduction to four related models
for the representation of biochemical systems recently proposed in the literature
in three different papers. Namely, we present Stochastic Automata Collectives
(SAC) [2], Stochastic Polyautomata Collectives (SPC) [2], the Chemical Ground
Form (CGF) [3], and the Biochemical Ground Form (BGF) [4]. The first pair of
models are based on a graphical automata-based notation, while the second pair
of models have been defined with a formal syntax and semantics similar to those
of traditional (stochastic) process algebras.

We unify the presentation of the four models presenting for all of them both
a graphical and a process algebraic notation. For the sake of readability, we do
not report the definition of the formal semantics of the calculi that can be found
in [4]. Moreover, we gently introduce the four models using several examples
that allow us to focus on the specific differences and similarities among the four
different models.

The remainder of the paper is divided in four Sections, one for each of the
considered models.

2 Stochastic Automata Collectives

In this section we introduce Stochastic Automata Collectives (SAC), the notation
for the representation of chemical systems presented in [2]. In that paper, SAC are
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only informally presented. In order to equip this model with a formal semantics,
we simply observe that this model is a fragment of CGF, a process algebra whose
formal syntax and semantics have been defined in [3]. We characterize the precise
fragment defining a syntax for SAC as a subset of the syntax of CGF. The reader
interested in the definition of the formal semantics of SAC can then refer to [3]
where the semantics of the whole CGF is reported.

Before presenting SAC, we introduce the running example for this section.

Example 1 (Two-stations rotaxane). We consider two-stations rotaxanes [10]
(simply called rotaxanes in the following), which are supramolecular systems
composed of an axle surrounded by a ring-type molecule. Bulky chemical moi-
eties (“stoppers”) are placed at the extremities of the axle to prevent the disas-
sembly of the system. In rotaxanes containing two different recognition sites on
the axle (“stations”), it is possible to switch the position of the ring between the
two stations by an external energy input (called the “stimulus”) as illustrated
in Figure 1. The part (a) of the figure represents the structure of the rotaxane,

Fig. 1. Representation of a rotaxane with stations A and B (a) and its energy curves
before (b) and after (c) the stimulus activating the ring movement from A to B.

while in part (b) and (c) the energy curves before and after the stimulus are
depicted: in the former the energy minimum corresponds to station A, while in
the latter it corresponds to station B. For this reason, the stimulus triggers the
shuttling of the ring from station A to station B.

It is worth mentioning that several rotaxanes of this kind, known as molecular
shuttles, have been already developed (see [5] and the references therein) and
used for building more complex systems [8, 7, 1].

We complete the example presenting a modeling of the behavior of the ro-
taxane given in chemical reaction style. We call the two stations of the rotaxane



A and B, respectively, and we call S the species of the molecules that stimulates
the movement of the ring from station A to station B. We consider four distinct
species for the representation of the rotaxane: RA (resp. RB) representing the
nonstimulated rotaxane with the ring in position A (resp. B), and RA

s (resp. RB
s )

representing the stimulated rotaxane with the ring in position A (resp. B).
The chemical reactions are as follows (here we abstract away from the rates

of the reactions that will be discussed in the next Example 2):

RA + S → RA
s

RB + S → RB
s

RA
s ↔ RB

s

RA ↔ RB

We consider two bi-molecular reactions and two mono-molecular invertible re-
actions. The first two represents the reaction between the stimulus and the ro-
taxane. As the rotaxane has two nonstimulated species RA and RB , we need
to consider two distinct reactions, one for each of these species. The two mono-
molecular bidirectional reactions model the movement of the ring. We need to
consider two distinct reactions because by Brownian motion we can assume that
the ring can move from station A to station B, and vice versa, both when the
rotaxane is stimulated and when it is not stimulated.

We now introduce SAC. It is an automata based notation in which each state of
an automaton corresponds to a chemical species X, and each outgoing transition
from state X represents one possible reaction in which the molecules of species
X can be engaged. The transitions are labeled with one of three possible kinds of
labels. The label τ(r) indicates the possibility for one molecule to be engaged in
a unary reaction with stochastic rate r. On the contrary, the transitions labeled
with ?a(r) and !a(r) models the complementary transitions executed by the two
reacting molecules. The name a is a name used to identify the reaction, while r
is a stochastic rate; both the name a and the rate r must match for the reaction
to be enabled. For instance, if the states associated to the species X and Y
have outgoing transitions labeled with ?a(r) and !a(r), respectively, we have that
one molecule of species X can react with one molecule of species Y , and the
time needed for this reaction to occur is distributed according to exponential
distribution with rate r. The target states of the transitions represent the species
of the product of the reaction. For instance, if the two above transitions labeled
with ?a(r) and !a(r) have the species X ′ and Y ′ as target state, respectively, we
have that the product of the reaction is given by two molecules, one of species
X ′ and one of species Y ′.

As a less trivial example of SAC, we model the rotaxane of the Example 1.

Example 2 (Modeling rotaxanes in SAC –graphical notation–). We present the
modeling of rotaxanes in SAC. The main difference between this new modeling
and the one proposed in the Example 1 is that it is molecular oriented instead of
reaction oriented. In other words, the modeling approach of SAC is based on the
description of the behavior of a molecule based on the sequence of reactions in



which a molecule can be engaged during its lifetime. Such behavior is depicted
in Figure 2. It is worth noting that the SAC modeling is based on two distinct

Fig. 2. Behavior of a rotaxane depicted as a stochastic automata collective.

automata; one for the description of the behavior of the stimulus S, and one for
the behavior of the rotaxane. The stimulus can only be engaged in a reaction
(that we call a) in order to stimulate the rotaxane. After this reaction, the
molecule is “consumed” (i.e. it forms a complex with the rotaxane). Consumed
molecules, are modeled with a special species that we denote with 0. On the
contrary, the modeling of the rotaxane includes bi-directional transitions for
the ring shuttling, and the complementary transitions for the reaction with the
stimulus.

We conclude this example reporting a discussion about the rates that are
included in the SAC modeling as symbolic (i.e. we use names instead of positive
real numbers) subscripts of the transition labels. The rate r is the stochastic
rate for the bi-molecular reaction between the rotaxane and the stimulus. As
far as the ring shuttling is concerned, we recall that, by Brownian motion, we
assume that the ring can move from station A to station B, and vice versa,
both when the rotaxane is stimulated and when it is not stimulated. Different
rates are considered for these movements: AtoB (resp. AtoBs) for the movement
from station A to station B when the rotaxane is nonstimulated (resp. stimu-
lated), BtoA (resp. BtoAs) for the opposite movement. According to the energy
minimum in the two distributions in Figure 1 parts (b) and (c), we have that
AtoB < BtoA and AtoBs > BtoAs. Thus, according to the stochastic behavior



of these mono-molecular reactions, when the rotaxane is stimulated (resp. non-
stimulated), the sojourn time of the ring on station A (resp. B) is longer than
the sojourn time on station B (resp. A).

We complete this section describing a formal syntax for SAC. This is obtained
as a fragment of a process algebra, called Chemical Ground Form (CGF) defined
in [3]. According to this syntax, each species has an associated definition describ-
ing the possible actions for the molecules of that species. There are three kinds
of actions that coincide with the possible labels for transitions in SAC. Namely,
we have the action τ(r) indicating the possibility for a molecule to be engaged in
a unary reaction. For instance, the definition A = τ(r);B is used to specify the
possibility for one molecule of species A to be engaged in a unary reaction that
produces one molecule of species B. Binary reactions have two reactants. The
two reactants perform two complementary actions ?a(r) and !a(r), where a is a
name used to identify the reaction; both the name a and the rate r must match
for the reaction to be enabled. For instance, given the definitions A =?a(r);C and
B =!a(r);D, we have that two molecules of species A and B can be engaged in a
binary reaction that produces two molecules, one of species C and one of species
D. If the molecules of one species can be engaged in several reactions, then the
corresponding definition admits a choice among several actions. The syntax of
choice is as follows: A = τ(r);B⊕?a(r′);C, meaning that molecules of species A
can be engaged in either a unary reaction that produces a molecule of species
B, or in a binary reaction with another molecule able to execute the comple-
mentary action !a(r′). In the second case, the molecule of species A contributes
to the reaction by producing a new molecule of species C.

We are now ready to define formally the syntax for Stochastic Automata
Collectives.

Definition 1 (Stochastic Automata Collectives (SAC)). Consider the fol-
lowing denumerable sets: Species ranged over by variables X, Y , · · ·, Channels
ranged over by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real num-
bers).
The syntax of SAC is as follows (where the big

∣∣ separates syntactic alternatives
while the small | denotes parallel composition):

E ::= 0
∣∣ X=M,E Reagents

M ::= 0
∣∣ π;X ⊕M Molecule

P ::= 0
∣∣ X|P Solution

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix
SAC ::= (E,P ) Reagents and initial Solution

Given a SAC (E,P ), we assume that all variables occurring in P occur also in
E. Moreover, for every variable X occurring in E, there is exactly one definition
X = M in E.

In the following, trailing 0 are usually left implicit, and we use | also as
an operator over the syntax: if P and P ′ are 0-terminated lists of variables,



according to the syntax above, then P |P ′ means appending the two lists into
a single 0-terminated list. Therefore, if P is a solution, then 0|P , P |0, and P
are syntactically equal. Moreover, the solution composed of k instances of X is
denoted with

∏
k X.

As an example of exploitation of the SAC syntax, we report the syntax for
the modeling of the rotaxane graphically depicted in the Figure 2 and discussed
in the Example 2.

Example 3 (Modeling rotaxanes in SAC –formal syntax–). We can consider the
following definitions for the species RA, RB , RA

s , RB
s , and S used in the previous

examples.
RA = τ(AtoB);RB⊕?s(r);RA

s

RB = τ(BtoA);RA⊕?s(r);RB
s

RA
s = τ(AtoBs);RB

s

RB
s = τ(BtoAs);RA

s

S = !s(r); 0

where 0 specifies reactions which have no product. Let E be the sequence of
definitions of the species RA, RB , RA

s , RB
s , and S are defined above. A solution

with one instance of non-stimulated rotaxane with the ring on station A and 2
instances of stimulus, is represented by the SAC (E,RA|S|S).

As already discussed, the syntax of SAC is obtained as a fragment of the
process algebra CGF defined in [3]. More precisely, the fragment is simply obtained
imposing that after an action π only one molecule can be produced, i.e. using the
syntax π;X instead of the more general syntax π; (X1| · · · |Xn) of CGF. In [3] also
the formal semantics for CGF is defined; here we simply recall how the semantics
is defined without reporting the full definition (the interested reader can refer
to [3]).

The semantics is obtained associating to each term of the process algebra
a Continuous Time Markov Chain (CTMC). Such CTMC is obtained in two
steps. First, a labeled transition graph (LTG) is defined which represents all
possible actions that can be executed by the molecules in the considered solution.
Second, a CTMC is extracted from such labeled transition graph by collapsing
those transitions which share the same source and target solutions in one CTMC
transition, whose rate is the sum of the rates of the collapsed transitions.

More precisely, the labeled transition graph is a labaled transition system
among solutions that consider two possible kinds of labels: i : r and i, j : r
representing, respectively, mono-molecular reactions with rate r involving the
i-th molecule and bi-molecular reactions with rate r involving the i-th and the
j-th molecules. As an example of labeled transition graph, we consider the SAC
(E,RA|S|S) defined in the example 3.

Example 4 (LTG of a rotaxane). As an example of labeled transition graph, we
show in Figure 3 the LTG of the SAC (E,RA|S|S) defined the Example 3. It is
worth noting that due to the presence of two stimulating molecules there exist
two pairs of transitions sharing the same source and target solutions.



Fig. 3. Labeled Transition Graph of the SAC (E, RA|S|S).

As reported above, the extraction of the CTMC from one labeled transition
graph simply requires the collapsing of those transitions which share the same
source and target solutions in one CTMC transition, whose rate is the sum of
the rates of the collapsed transitions. As an example, we discuss the CTMC of
the solution considered in the Example 4.

Example 5 (CTMC of a rotaxane). As an example of Continuous Time Markov
Chain extracted from a Labeled Transition Graph, we show in Figure 4 the
CTMC obtained from the LTG in Figure 3. It is worth noting that the CTMC

Fig. 4. Continuous Time Markov Chain of the SAC (E, RA|S|S).

has the same states of the corresponding LTG. There are two differences: the
transitions are labeled only with the stochastic rates, and the transitions sharing
the same source and target solutions collapse in a unique transition, with rate
equal to the sum of the rates of the collapsed transitions.

The CTMC semantics allows us to interpret the behavior of a SAC (E,P ) as
follows. Given any state T of the CTMC of (E,P ), if it has n outgoing transitions
labeled with r1, · · ·, rn, then the probability that the sojourn time in T is less
than t is exponentially distributed with rate

∑
i ri, i.e. Prob{delay < t} =

1− e−t
∑

i
ri , and the probability that the j-th transition is taken is rj/(

∑
i ri).



3 Chemical Ground Form

One of the main feature of SAC is that the number of molecules in a modeled
solution is an invariant, in fact when a molecule engage a reaction it produces
exactly one new molecule. This is guaranteed by the syntax of molecule def-
initions π;X, according to which an actions π is always followed by one and
only one species X. In [3], an extension of the model is considered in which the
product can be a multiset of species, namely, the new syntax of action execution
is π; (X1| · · · |Xn). The new model is called Chemical Ground Form (CGF). The
motivation for the definition of CGF is to obtain a process algebraic modeling of
basic chemistry. As in basic chemistry there is no limitation to the number of
molecules in the product of one reaction, it is necessary to admit more than one
molecule as the product of one action.

The syntax and semantics of CGF can be found in [3]. We recall the syntax.

Definition 2 (Chemical Ground Form (CGF)). Consider the following de-
numerable sets: Species ranged over by variables X, Y , · · ·, Channels ranged
over by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of CGF is as follows:

E ::= 0
∣∣ X=M,E Reagents

M ::= 0
∣∣ π;P ⊕M Molecule

P ::= 0
∣∣ X|P Solution

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix
CGF ::= (E,P ) Reagents and initial Solution

Given a CGF (E,P ), we assume that all variables occurring in P occur also in
E. Moreover, for every variable X occurring in E, there is exactly one definition
X = M in E.

It is worth observing that the difference between the syntax of SAC and the
syntax of CGF is that after the execution of one action π a solution, i.e. a multiset
of molecules, can be specified as the product of the action. We call molecule
splitting this possibility for one reactant to produce more than one molecule.

In [3] CGF is proved to be equivalent to basic chemistry both for discrete state
and continuous state semantics. Discrete state semantics describe a solution as
a multiset of molecules (i.e. for each molecule the exact number of instances is
known) while continuous state semantics model a solution indicating the con-
centration of each species of interest (i.e. each species has an associated real
number quantifying the concentration). By basic chemistry we mean systems
modeled by a finite set of mono-molecular and bi-molecular reactions. To prove
this equivalence result, CGF is equipped with both a discrete state semantics de-
fined in terms of CTMC and a continuous state semantics defined in terms of
ordinary differential equations. In this paper, we consider only the discrete state
semantics.

We now present the running example for this section.



Example 6 (Counting the number of reactions). This example is not inspired by a
specific chemical system, but it is proposed on purpose to focus on the increment
of expressive power of CGF with respect to SAC. The idea is to consider two kinds
of bi-molecular reactions, the first one called a and the second one called b.
We present a system in which an arbitrary number of reactions of kind a are
executed, and then a corresponding number of reactions of kind b occurs. In
order to define such a system, we need the ability to “count” the number of
occurrences of the reaction of kind a.

We can define such system in CGF considering two pairs of species: A and A′

as the reactants of the reaction a and B and B′ as the reactants of the reaction
b:

A = !a(h); (A|B)⊕ τ(l);B′
A′ = ?a(h);A′

B = !b(h); 0
B′ = ?b(h);B′

We assume that the rate h is greater than the rate l. We consider, as initial
solution, one instance of species A and one of species A′: formally, we consider
the CGF (E,A|A′) where E includes the definitions of the species A, A′, B, and
B′ as reported above.

As done in the previous section for SAC, we do not report the formal definition
of the semantics that can be found in [3]. We simply recall that it is defined
in terms of CTMCs obtained in two steps: first a labeled transition graph is
associated to a CGF, then a CTMC is extracted from this labeled transition
graph. As an example, we discuss the CTMC of the CGF (E,A|A′) defined in the
Example 6.

Example 7. We present in Figure 5 the CTMC that, following the technique
already described in the previous section (and formlized in [3]), is associated to
the CGF (E,A|A′) of the Example 6. As we assume that the rate h is greater than

Fig. 5. Continuous Time Markov Chain of the CGF (E, A|A′).

l, the initial solution more probably will select the reaction of kind a depicted
horizontally in the Figure. Due to the fairness implicit in stochastic systems, the
transition with the lower rate l cannot be delayed indefinitely, thus eventually
one of the states of the second row will be reached with probability one. At this



point of the computation, a number of transitions of kind b will be executed that
coincides with the number of transitions of kind a already executed.

We complete the section showing how the graphical notation of SAC can be
extended to cope also with molecule splitting of CGF. The idea is to separate,
in case of splitting, the transitions in two parts adding an intermediary state.
This new intermediary state is graphically represented with a line. We use one
transition from the state representing the species of the reactant leading to the
new intermediary transition. This transition is labeled with the executed ac-
tion. Then, we use as many (unlabeled) transitions as the number of produced
molecules. Each transition is from the new intermediary state to the state repre-
senting the species of one of the product. As an example, we show the graphical
representation of the system described in the Example 6.

Example 8. The definitions of the species A, A′, B, and B′ reported in the
Example 6 can be graphically rendered as in the Figure 6. The only novelty with

Fig. 6. Graphical representation of the CGF described in the Example 6.

respect to the graphical notation of SAC is in one splitting that occur when a
molecule of species A is engaged in one reaction with one molecule of species A′:
in this case, the molecule splits and produces one molecule of species A and one
of species B.



4 Stochastic Polyautomata Collectives

Stochastic Polyautomata Collectives (SPC) have been proosed in [2] as an exten-
sion of SAC able to capture the essential primitives of biochemistry. Biochemistry
is obviously based on chemistry, and in principle one can always express the be-
havior of a biochemical systems by a collections chemical reactions. But there
is a major practical problem with that approach: the collection of reactions for
virtually all biochemical systems is an infinite one. For example, just to express
the chemical reactions involved in linear polymerization, we need to have a dif-
ferent chemical species for each length n of polymer Pn, with reactions to grow
the polymer: Pn +M → Pn+1. While each polymer is finite, the set of possible
polymerization reactions is infinite.

Nature adopts a more modular solution: the act of joining two molecules is
called complexation, and polymers are made by iteratively complexing monomers.
Each monomer obeys a finite simple set of rules that leads to the formation
of polymers of any length; therefore, it seems that there should be a finite
way of describing such systems. One can start by writing pseudo-reactions like
P + M → P : M , where P : M is meant to represent a P (olymer) molecule
attached to an extra M(onomer), yielding a longer polymer. However, there are
in general many possible ways (that is, many different patches on the surface of
a molecule) by which one molecule can exclusively form a complex with other
molecules, and soon one needs to describe the interface of each molecule. This
situation, while not commonly found in basic chemistry, is particularly acute in
biochemistry, where virtually all reactions are governed by enzymes and molec-
ular machines, which are themselves often built by complexation, and which
usually operate by complexing with their reactants.

Both SAC and CGF have been extended to model also a minimalistic form
of complexation. In this section we present Stochastic Polyautomata Collec-
tives (SPC), the extension of the former with primitives for association (i.e. the
creation of a complex) and dissociation (i.e. the separation of parts of the com-
plex). This model has been presented in [2]. More precisely, two additional pairs
of complementary prefixes, &?a(r),&!a(r) for association and %?a(r),%!a(r) for
dissociation are added. Before presenting the formal syntax of SPC, we introduce
the new primitives informally by means of examples. To simplify the notation,
in the examples we abstract away from the stochastic rates, e.g., we write &?a
instead of &?a(r).

Example 9 (Linearly growing polymer). Each complexation event involves ex-
actly two partners. We imagine that the partners have two complementary sur-
face patches that can interlock. If c represents a surface shape (say, a paraboloid),
then !c indicates one of the two patches (say, the convex one) and ?c indicates the
complementary patch (the concave one). Then, &!c is the action that presents
the convex patch, and &?c is the action that presents the concave patch. When
two such association actions meet, an actual complexation event can take place,
joining the two complementary surfaces.



A linearly growing polymer could be represented as follows, using a seed S
and a collection of equal monomers M . The seed starts the chain by present-
ing a concave patch ?c: this is our initial, zero-length, polymer. Each monomer
presents a convex patch !c, which can bind with an existing polymer on the
complementary concave patch. After (and only after) such a binding, a bound
monomer M ′ presents another concave patch ?c, so that the polymer can keep
growing. Both the seed and each monomer can have further behavior, S′ and
M ′′.

S = &?c;S′

M = &!c;M ′

M ′ = &?c;M ′′

Each complexation event creates a unique bond between exactly the two molecules
that are joined to each other. This bond needs to be represented somehow, to
make sure that a molecule can bind with only one other molecule at a time on
any given patch. We represent such a bond as a unique key k that is shared by
the two complexed molecules (think of k as a fresh number, or as a fresh channel
in π-calculus [9]). Such unique keys, and related information, are collected in the
association history of each molecule. So, the first interaction of an S with an M ,
which initially have empty association histories (0), proceeds as follows:

S0 | M0 → S′〈?c,k1〉 | M
′
〈!c,k1〉

Interaction with a second monomer then introduces a second fresh key in the
histories:

S0 | M0 | M0 → S′〈?c,k1〉 | M
′
〈!c,k1〉 | M0 → S′〈?c,k1〉 | M

′′
〈?c,k2〉::〈!c,k1〉 | M

′
〈!c,k2〉

and so on. In any configuration, we can reconstruct from the association histories
who is bound to whom, and on what surface the bond was formed. Note that
the description of the system is finite (3 reagents, S, M , M ′), but that polymers
of any length can be assembled.

Example 10 (Branching polymer). After complexation, a molecule is still free to
perform additional complexations or other interactions. That is, complexation
places no restrictions on the behavior of the original molecules, except for the fact
that new complexations cannot occur on surfaces that are already occupied, and
that decomplexations must happen consistently with prior complexations (as we
discuss shortly). To illustrate this freedom, let us modify the previous example
and allow each bound monomer to offer a seed for growing a new polymer branch:

S = &?c;S′

M = &!c;M ′

M ′ = &?c;S

When an M ′ turns into a seed S, that is a seed with an non-empty association
history that connects it to its current branch, but that can also start a new
branch. If we do not wish to start a branch at every monomer, we can modify



M ′ to something like M ′ = &?c;S ⊕ τ ;M ′′, so that an M ′ has a temporary
potential to act as a seed, but after some delay (τ) it may change to an M ′′ that
is not a seed. By adjusting the stochastic rates of the delay and of c, we can
produce different (stochastic) branching factors.

Example 11 (Actin-like polymer). Decomplexation is the inverse of complexation,
that is, two formerly joined molecules can dissociate. We indicate by %!c the
attempt to dissociate from the convex side, and %?c the attempt to dissociate
from the concave side. When two complexed molecules attempt complementary
dissociations, an actual decomplexation event can take place. To illustrate this
situation, we describe a different kind of linear polymer: one that can grow only
at one end, and can shrink only at the other end. There are four molecular states
for each monomer: Mf (free monomer), M l (monomer bound on the left), Mr

(monomer bound on the right), and M b (monomer bound on both sides). Each
monomer has a left convex surface and a complementary right concave surface. A
polymer should associate (grow) only on the right and should dissociate (shrink)
only on the left.

Mf = &!c;M l ⊕&?c;Mr

M l = %!c;Mf ⊕&?c;M b

Mr = %?c;Mf

M b = %!c;Mr

A free monomer Mf can either associate on the left convex surface and become
bound on the left, or associate on the right concave surface and become bound
on the right. A monomer M l bound only on the left can either dissociate on the
left (if allowed by its partner, which must in fact be an Mr in this case) and
return free, or associate on the right (with an Mf ) and become bound on both
sides. A monomer Mr bound only on the right can only dissociate on the right:
that is, a polymer cannot grow on the left. A monomer M b bound on both sides
can only dissociate on the left (with an Mr): that is, a polymer cannot shrink
on the right or break in the middle. These rules cover also the base cases when
a polymer of length 2 initially forms or finally dissolves.

A decomplexation should succeed only between a pair of molecules that were
actually complexed in their past history, and this can be checked by inspecting
the unique keys introduced during complexation. For example let us consider
two Mf molecules that complex and then immediately decomplex:

Mf
0 | M

f
0 →M l

〈!c,k〉|M
r
〈?c,k〉 →Mf

0 |M
f
0

The second transition is allowed to happen because M l offers %!c, Mr offers
the complementary %?c, and the same key k appears in both association his-
tories on the c interface (and with the correct convexity). As a consequence of
decomplexation, the keys are removed from the histories.

After this gentle introduction to SPC by means of examples, we present the
formal definition of its syntax. The main novelty deals with the association
histories which are added to each molecule to keep track of the association keys



representing the bonds currently active between the molecule itself, and the other
molecules to which it is complexed.

Definition 3 (Stochastic Polyautomata Collectives (SPC)). Consider the
following denumerable sets: Species ranged over by variables X, Y , X1, X2, · · ·,
Channels ranged over by a, b, · · ·, a set of Association keys ranged over by k,
k′, · · ·. Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of SPC is as follows:

E ::= 0
∣∣ X=M,E Reagents

M ::= 0
∣∣ π;X ⊕M Molecule

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix∣∣ &?a(r)

∣∣ &!a(r) Association prefixes∣∣ %?a(r)

∣∣ %!a(r) Dissociation prefixes
P ::= 0

∣∣ XH |P Solution
H ::= 0

∣∣ 〈?a, k〉 :: H
∣∣ 〈!a, k〉 :: H Association history

BGF ::= (P, S) Reagents and initial Solution

Given a BGF (E,P ), we assume that all variables occurring in P occur also in E.
Moreover, for every variable X occurring in E, there is exactly one definition
X = M in E. Moreover, each association key k in P , occur in exactly two
complementary associations 〈?a, k〉 and 〈!a, k〉, that appear in the association
histories H and H ′ of two distinct molecules XH and X ′H′ .

The syntax of SPC has been obtained as a fragment of the Biological Ground
Form (BGF), a process algebra defined in [4]. More precisely, SPC is as the frag-
ment of BGF without molecule splitting. In [4], the formal semantics of BGF is
defined; clearly, this applies also to its fragment SPC.

We complete the section presenting an example of graphical notation for
SPC, depicting the representation of the actin-like polymer described in the Ex-
ample 11.

Example 12 (Graphical representation of the actin-like polymer). The graphical
representation of SPC simply includes four new labels for the new actions &?a(r),
&!a(r), %?a(r) and %!a(r). As an example, we depict in the Figure 7 the repre-
sentation of the behavior of an actin-like polymer as described in the Example 11
(as done in that example, we abstract away from the rates).

5 Biochemical Ground Form

We now move to the last model considered in this paper, the Biochemical Ground
Form (BGF). This model includes all mechanisms discussed in this paper, both
molecule splitting and complexation. The main technical problem deals with the
specification of the distribution of the associations in the association history of
one reactant over the different products of a splitting. In fact, in case a molecule



Fig. 7. Graphical representation of the actin-like polymer described in the Example 11.

forks it is necessary to specify how its associations are distributed over the
produced molecules. This information is described by means of a new syntactic
category called association markers. These are additional information associated
to the produced molecule, that completely and uniquely define the distribution of
associations, that is, all possible associations of one reactant should be reported
in one and only one association marker of the product.

The formal syntax of BGF is defined as follows.

Definition 4 (Biochemical Ground Form (BGF)). Consider the following
denumerable sets: Species ranged over by variables X, Y , X1, X2, · · ·, Channels
ranged over by a, b, · · ·, a totally ordered set of Association keys ranged over by
k, k′, · · ·. Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of BGF is as follows:

E ::= 0
∣∣ X=M,E Reagents

M ::= 0
∣∣ π;P ⊕M Molecule

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix∣∣ &?a(r)

∣∣ &!a(r) Association prefixes∣∣ %?a(r)

∣∣ %!a(r) Dissociation prefixes
P ::= 0

∣∣ Xh|P Product
h ::= 0

∣∣ ?a :: h
∣∣ !a :: h Association markers

S ::= 0
∣∣ XH |S Solution

H ::= 0
∣∣ 〈?a, k〉 :: H

∣∣ 〈!a, k〉 :: H Association history
BGF ::= (E,S) Reagents and initial Solution

Given a BGF (E,S), we assume that all variables occurring in S occur also in E.
Moreover, for every variable X occurring in E, there is exactly one definition
X = M in E. Moreover, each association key k in P , occur in exactly two



complementary associations 〈?a, k〉 and 〈!a, k〉, that appear in the association
histories H and H ′ of two distinct molecules XH and X ′H′ .

As discussed above, a well formed BGF should be defined in such a way that
every time a molecule splits, it is always possible to define the way in which the
associations in the history of the reactants are distributed over the products.
The reader interested in the formalization of this notion of well formed CGF can
refer to [4], where also the formal definition of the semantics can be found.

We complete this section with an extension of the example of the actin-
like polymer discussed in the Example 11. The idea is to allow a fully bound
monomer to split into two independent monomers, each one inheriting one of the
two bonds. In this way, the polymer breaks in two new independent polymers.

Example 13 (Breaking polymer). To illustrate complexation in combination with
molecule splitting, we describe a linearly growing polymer similar to the actin-
like polymer of the Example 11 in which each monomer, once bound on both
sides, is free to split into two new monomers each one inheriting one of the two
bonds. The definition is as follows:

Mf = &!c;M l ⊕&?c;Mr

M l = %!c;Mf ⊕&?c;M b

Mr = %?c;Mf

M b = %!c;Mr ⊕ τ ; (M l
!c|Mr

?c)

It is worth observing that in case of splitting of the molecules of species M b,
it is necessary to indicate also how to split the associations among the two
produced molecules of species M l and Mr, respectively. This is obtained adding
the association marker corresponding to the bonds to be split.

Fig. 8. Graphical representation of the breaking polymer described in the Example 13.

Also the graphical representation for CGF that we consider need to add graph-
ical notation for dealing with association splitting. This is achieved adding the



association markers as labels of the transitions incoming into the species of the
products of a splitting reaction. As an example, we depict the graphical repre-
sentation of the breaking polymer of the Example 13.

Example 14 (Graphical representation of the breaking polymer). The graphical
representation of BGF simply combine those of CGF and SPC with the addition of
association markers as labels for the transitions representing the target states in
case of splitting. As an example, we depict in the Figure 8 the representation of
the behavior of an breaking polymer as described in the Example 13 (as done in
that example, we abstract away from the rates).
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