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Technological and Application Trends

■ Internet-of-Things 
■ Edge computing 
■ 5G 
■ Server-less computing 
■ Big data, Data analytics 
■ Cloud for Machine learning, Artificial Intelligence 
■ Machine learning, Artificial Intelligence for Cloud
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Internet-of-Things
■ IoT connected devices installed base worldwide
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■ In IoT, what is interesting is not the number of devices but the data they generate 

Internet of Things

2020 — Amount of data generated per day by a
Person 1.5GB

Smart Hospital 3TB
Self-driving car 4TB

Connected airplane 5TB
Connected factory 3PB
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From Cloud to Edge Computing 

■ Edge: extremity of a typical enterprise network of IoT-enabled devices — 
sensors, actuators (billions) 

■ Fog: computing devices close to the edge of the IoT network to process the 
large amounts of generated data (millions) 

■ Core: backbone network connecting geographically dispersed fog networks 
(tens of thousands) 

■ Cloud: provides the storage and processing capabilities for the massive 
amounts of aggregated data originating at the edge, hosts applications to 
interact with and manage the IoT-enabled devices (thousands)

5 © Babaoglu

Edge Computing

■ Cloud computing usually involves thousands of physical servers running in 
centralized data centers close to the core of the Internet 

■ Edge computing directs specific processes away from centralized data centers 
to points in the network close to users, devices and sensors 

■ Edge computing is essential for IoT, as it allows collection and processing of 
huge amounts of data in real-time with low latency 

■ Edge computing helps IoT systems lower connectivity costs by sending only 
the most important information to the cloud, as opposed to raw streams of 
sensor data
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5G

■ 5G is the fifth generation technology standard for cellular networks 
■ Evolution of 4G 
■ 5G is a key enabling technology for both IoT and edge computing 
■ 5G provides the fabric for device-to-device and device-to-edge 

communication 
■ 5G delivers the higher speeds and broader bandwidths required to support 

analytics and control functions in real-time where the data is created and actions 
are taken
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5G

■ With 5G, retailers will benefit from up-to-date information on consumer buying 
trends, factories will be able to perform predictive maintenance on equipment 
that’s about to fail, cellphone carriers will be able to support augmented reality 

■ As 5G deployment takes place, hybrid cloud systems will increasingly take 
advantage of opportunities to perform computations at the edge 

■ 5G frequency bands 
■ Low-band 5G uses 600-700 MHz to achieve 30-250 Mbps speed 
■ Mid-band 5G uses 2.5-3.7 GHz, to achieve 100-900 Mbps speed 
■ High-band 5G uses 25-39 GHz to achieve 1 Gbps speed
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Big Data

■ An important application of cloud computing is to perform data analytics — the 
science of extracting information from large volumes of data 

■ Cloud analytics refers to a service model where one or more components of 
data analysis and business intelligence operations are implemented in the cloud 

■ Combined, big data and the cloud can offer tremendous value to companies by 
making it easier to track, analyze and ultimately act on insights
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Big Data

■ In the pre-cloud era, 
■ It was tempting for business processes to become isolated in silos making 

coordination cumbersome, sharing difficult and transferring data, especially large 
amounts of it, slow 

■ Big data processing was cumbersome, and expensive meaning that big data efforts 
were reactive, providing insights from out-of-date archived data whereas businesses 
need to be proactive and be able to access, analyze and act upon the most current 
data
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Sources of Big Data

11

Terabytes 
(1012)

Gigabytes 
(109)

Exabytes 
(1018)

Petabytes 
(1015)

 Velocity        |    Variety     |  Variability

Vo
lum

e

Audio/video
Log files

Text/Image

Data market feeds
eGov feeds
Weather 

Wikis/blogsClick stream Sensors/RFID/devices

Spatial & GPS
Mobile Advertising Collaboration

eCommerce

Digital marketing

Search marketing

Web logs

RecommendationsSales pipeline

Payables

Payroll

Inventory

Contacts

Deal tracking

Customer Relationship Management (CRM)

Enterprise Resource Planning (ERP) Modern web Internet of Things

© Babaoglu

Big Data

■ Big Data affects the organization of database systems 
■ Traditional relational databases are unable to satisfy some of the requirements 

of big data and NoSQL databases have emerged for many cloud applications 
■ Key-Value pair stores are simpler and can benefit from horizontal scaling to 

large clusters 
■ Many NoSQL stores compromise consistency in favor of availability, partition 

tolerance, and speed
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Machine Learning

■ Machine learning (or predictive analytics) is a subfield of Artificial Intelligence 
and statistics that provides systems the ability to automatically learn and 
improve from experience without being explicitly programmed 

■ The process of learning begins with a training phase where observations or 
data, such as examples, direct experience, or instructions are processed to 
discover patterns so that better decisions can be made in the future
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Why Learn?
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1. Learn it if you cannot track it 
(e.g., AI gaming, robot control)

2. Learn it if you have to adapt/personalize 
(e.g., predictive typing)

3. Learn it if you cannot program it                      
(e.g., recognizing speech/image/gestures, NL translation)

4. Learn it if you cannot scale it                     
(e.g., recommendations, spam & fraud detection) 
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Cloud for Machine Learning and AI 
AWS

■ SageMaker — fully managed platform to build, train, and deploy machine 
learning models 

■ Rekognition — a deep learning-based image recognition service 
■ Lex — for building voice and text chat chatbots 
■ Polly — convert text into lifelike speech 
■ Comprehend — continuously trained and fully managed natural language 

processing 
■ Transcribe — speech-to-text conversion with automatic speech recognition
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Cloud for Machine Learning and AI 
Azure and Google

■ Azure Machine Learning Studio 
■ Google AI Platform 
■ TensorFlow
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Generative AI on Cloud 
AWS

■ AWS tools for building generative AI applications: 
■ Bedrock: collection of foundation models from leading AI companies like AI21 Labs, 

Anthropic, Cohere, Meta, Mistral AI, Stability AI 
■ Elastic Compute Cloud instances powered by NVIDIA H100 Tensor Core GPUs 
■ Elastic Compute Cloud instances with up to 16 AWS Trainium accelerators 
■ Elastic Compute Cloud instances powered by Inferentia2 accelerators 
■ UltraClusters consist of thousands of accelerated EC2 instances that are co-located 

in a given AWS Availability Zone and interconnected using a petabit-scale nonblocking 
network
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■ Machine learning and predictive analytics provided through cloud computing 
are core capabilities that are useful throughout a business 

■ They can also be valuable in improving the operation and management of 
cloud and HPC systems themselves

Machine Learning and AI for Cloud Management
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■ Energy efficiency: Limit the power consumption of future HPC systems to 
45MW (energy requirement of a small town of 80,000) by improving their energy 
efficiency 

■ Availability: Limit the perceived failure rates of future HPC systems to the 
equivalent of once-per-week levels to improve their availability 

■ Management: Improve manageability of future HPC systems by limiting reliance 
on human operators  and facilitating semi-automatic control
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Machine Learning and AI for Cloud Management
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Using Past Data to Predict the Future

■ Scientific discovery is increasingly being driven by data 
■ The data-driven approach allows us to uncover interesting properties of 

processes without having to construct cause-effect mathematical models 
■ Easy access to massive data sets, big-data analytics tools and HPC have 

been factors fueling this trend 
■ The data-driven approach can be taken one step further by adding an 

intelligence component in the form of a predictive computational model 
■ Beyond gaining knowledge about the past from historical data, the “data-driven 

plus intelligence” approach can have predictive capabilities about future or 
unseen behaviors 
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Cognification
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Penguin Books, 2016
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Cognification

■ Cognification — Transforming ordinary (dumb) objects, services or activities into 
their intelligent counterparts through data by tapping into existing services for 
the required analytics and intelligence 

■ Similar to electrification (of mechanical, manual tasks) that took place more than 
a century ago when electricity became ubiquitous as a commodity
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Cognification
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Cognified WSC Systems

■ Cognification in the form of predictive computational models could be the 
software technology bridge that is necessary for achieving sustainable cloud 
computing and HPC 

■ Need data and intelligence 
■ Intelligence derived from predictive models for workloads, power consumption, 

failures 
■ If predictive models can be built online from streamed data, they can be used to 

enact control over the system in real time
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Towards Cognified WSC 
Predictive Models

■ Technologies and services to be tapped: 
■ Data analytics — streaming data management 
■ Intelligence — machine learning, deep learning 
■ Need to build predictive models for 
■ Power consumption 
■ Workloads 
■ Failures
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Data-driven Energy Efficiency

■ Based on predictive models for power consumption, workloads and failures 
built from online streamed data and on advanced hybrid optimization techniques 
using Constraint Programming 

■ Achieved through a cognified dispatcher — which jobs to run next (scheduling) 
and where to run them (allocation) based on 
■ intelligent consolidation: gather as many active jobs/threads on as few physical 

nodes/cores as possible so that idle nodes/cores can be switched to low-power 
mode or powered off completely  

■ failure-aware allocation: avoid assigning new jobs to nodes that are likely to fail in the 
near future  

■ energy-aware scheduling through power capping: select the set of jobs to run such 
that their cumulative power needs do not exceed a threshold 
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■ Power consumption of HPC applications are often multidimensional, nonlinear 
and has large dynamic range 

■ Power-aware allocation schemes have to consider multiple measures for 
workloads (e.g., memory size in addition to CPU utilization) and take into 
account the effects of co-locating jobs on the same node 

■ In large Data Centers, consolidation has been facilitated to a large extent by the 
availability of virtualization and container technologies such as Docker and 
Kubernetes 

■ Container technologies are not as widespread in current HPC systems which 
makes consolidation less common as an energy efficiency mechanism for them

Energy Efficiency
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Data-driven Availability
■ Based on predictive models for failures and workloads built from online streamed 

data 
■ Achieved through 
■ adaptive checkpointing: dynamically adjust the checkpoint interval based on predicted 

failure rates 
■ “just-in-time” checkpointing: time proactive checkpoints to complete shortly before 

failures occur  
■ adaptive migration: if a job that is predicted to take a long time to complete is started on 

a node with moderate failure probability, move it to a safer node; if the job is predicted to 
complete soon, leave it where it is (even if it is a node with moderate failure probability) 

■ adaptive replication: hybrid mechanism that selects automatically between just-in-time 
checkpointing and replication while dynamically adjusting the checkpoint interval and the 
number of activated replicas
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■ Process-level or hardware-level replication is an often-employed technique to 
increase availability in Data Centers 

■ It is less common in HPC systems for several reasons 
■ failure independence, which is the foundation for replication is difficult to satisfy in HPC 

systems which tend to be more tightly coupled 
■ replication often incurs high overhead in order to guarantee replica equivalence despite 

non-determinism in applications 
■ hardware-level replication contributes to increasing socket counts and power 

consumption, which are already at elevated levels in HPC systems

Data-driven Availability
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Data-driven Availability

■ When replication is in use to improve availability, the dispatcher tries to allocate 
replicas on nodes that exhibit the greatest failure independence as measured by 
predicted failure correlations between them
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What We Have Done

■ Built and tested random forest ensemble classifiers for node failures based on 
416 features derived from a public Google dataset for a cluster of 12,453 
machines over a 29-day period 

■ Built and tested predictive models for system power consumption based on 
data from a hybrid CPU-GPU-MIC HPC system called Eurora installed at a local 
data center (Cineca) 

■ Built and tested predictive models for job duration based on data from the 
Eurora system
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Evaluation

■ Train the classifier on 15 benchmarks constructed from the Google trace 
■ If the “down time” of a node is longer than 2 hours, assume it is a node failure, 

otherwise assume node removed for a software update  
■ Continuous scores of the classifier are discretized (positive, negative) based on 

a threshold 
■ Precision — fraction of all classifications that are correctly classified as positive 
■ Recall or True Positive Rate — fraction of positive classifications that are correct
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Evaluation

■ The Receiver Operating Characteristic (ROC) curve plots the True Positive 
Rate (TPR) versus the False Positive Rate (FPR) of the classifier as the threshold 
is varied 

■ The Precision-Recall (PR) curve plots the precision versus recall (or TPR) of the 
classifier as the threshold is varied
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Failure Prediction 
“Area under ROC” and “Area under PR”
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Fig. 2 AUROC and AUPR on ensemble test data

values greater than 0.5 correspond to classifiers that perform
better than random guesses, while AUPR represents an aver-
age classification precision, so, again, the higher the better.
AUROC and AUPR do not depend on the relative distribu-
tion of the two classes, so they are particularly suitable for
class-imbalance problems such as the one at hand.

Figure 2 showsAUROC andAUPR values obtained for all
datasets, evaluated on the ensemble test data. For all bench-
marks, AUROC values are very good, over 0.75 and up to
0.97. AUPR ranges between 0.38 and 0.87. Performance
appears to increase, especially in terms of precision, towards
the end of the trace. Lower performance that is observed for
the first two benchmarks could be due to the fact that some of
the aggregated features (those over 3 or 4 days) are computed
with incomplete data at the beginning.

To evaluate the effect of the different parameters and the
ensemble approach, Fig. 3 displays the ROC and PR curves
for the benchmarks that result in the worst and best results
(4 and 14, respectively). Performance of the individual clas-
sifiers in the ensemble are also displayed (as points in the
ROC/PR space since their answer is categorical). We can
see that individual classifiers result in very low FPR which
is very important in predicting failures. Yet, in many cases,
the TPR values are also very low. This means that most test
data is classified as safe and very few failures are actually
identified. TPR appears to increase when the fsafe parame-
ter decreases, but at the expense of the FPR and Precision.
The plots show quantitatively the clear dependence between
the three plotted measures and fsafe values. As the amount
of safe training data decreases, the classifiers become less
stringent and can identify more failures, which is an impor-
tant result for this class-imbalance problem. Also, the plot
shows clearly that individual classifiers obtained with differ-
ent values for fsafe are diverse, which is critical for obtaining
good ensemble performance.

In general, the points corresponding to the individual clas-
sifiers are below the ROC and PR curves describing the
performance of the ensemble. This proves that the ensemble

method is better than the individual classifiers for this prob-
lem,which can be also due to their diversity. Some exceptions
do appear (points above the solid lines), however for very low
TPR (under 0.2) so in an area of the ROC/PR space that is
not interesting from our point of view. We are interested in
maximizing the TPR while keeping the FPR at bay. At a
FPR of 5 %, which means few false alarms, the two exam-
ples from Fig. 3 display TPR values of 0.272 (worst case)
and 0.886 (best case), corresponding to precision values of
0.502 and 0.728 respectively. This is much better than indi-
vidual classifiers at this level, both in terms of precision and
TPR. For failure prediction, this means that between 27.2
and 88.6 % of failures are identified as such, while from all
instances labeled as failures, between 50.2 and 72.8 % are
actual failures.

According to our classification strategy, a node would be
considered to be in safe state whether it fails in 2 days or in 2
weeks. Similarly, it is considered to be in fail state whether
it fails in 10 min or within 23 h. Obviously the two situations
are very different and the impact of misclassification varies
depending on the time to the next failure. In earlier work [32],
we have shown that misclassifications of time points in the
fail class (false negatives) are in general far from the time
of failure, while misclassifications of the safe class (false
positives or false alarms) are, on average, closer to the failure
instant than are true negatives (correct classification of safe
time points). This implies that the impact of misclassification
is reduced.

5 Impact on running tasks

When a node fails, all tasks running on that node are inter-
rupted. Thus, resources (e.g., CPU time) that had been
consumedby interrupted tasks arewasted. To study the extent
of this wastage, we estimated the number of interrupted tasks
and the corresponding CPU-hours wasted due to failures in
our data. The study was limited to the period of the trace
corresponding to ensemble test data in all 15 benchmarks
representing 180 hours of data and containing 668 node fail-
ures. For this period, a simple count of tasks evicted or killed
in close vicinity of the failure results in a total of 5488 inter-
rupted tasks, corresponding to over 31,393 CPU-hours being
wasted.

The Google dataset contains data from different tasks
that use resources very differently. Some tasks correspond to
latency-sensitive, long-running, revenue-generating produc-
tion services that respond to user queries. If these tasks are
interrupted, only the latest queries will be affected, so most
of the CPU time they used is not actually wasted. Other tasks
are from non-production batch jobs, and typically return a
value at the very end, so their interruption results in all of
the CPU time they used being wasted. The Google dataset
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Failure Prediction 
Receiver Operating Characteristic
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Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives
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Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives
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■ fsafe is a parameter of the classifier that governs sampling to compensate class imbalance
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Failure Prediction 
Precision Recall
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Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives
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Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives
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Power Consumption Prediction
■ Eurora HPC system at CINECA
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Predicting System Power
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■ Among the many software-based mechanisms for increasing availability, 
check-point/restart is by far the most widely used in current systems 

■ Check-pointing consists of taking a snapshot of the application in execution 
and saving it on nonvolatile media (usually a parallel file system) 

■ When a failure occurs, the application is restarted from the last check-point 
found on nonvolatile media and the application continues until the next check-
point

Data-driven Availability
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■ Check-pointing and restarting can be made automatic and transparent to 
applications by initiating them pro-actively through a system software layer  

■ This removes a big burden from users, but it comes at the cost of increasing 
overhead since the state that is saved and restored to/from nonvolatile memory 
cannot exploit application semantics (to reduce its size) and has to include the 
entire application state 

■ How to maintain the convenience of system-initiated check-pointing at a cost 
comparable to user-initiated check-pointing? 

■ Too frequent check-pointing with high overhead can slow down applications to a 
crawl and can also be detrimental for energy efficiency

Check-Point/Restart
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■ “Optimal” values for check-point intervals can be computed based on statistical 
averages for inter-failure times and check-pointing costs 

■ In HPC systems with high failure rates and large check-point/restart times, the 
mechanism can degenerate into a “pure overhead” scheme performing only check-
points/restarts and no useful computation 

■ Under these conditions, failure masking through replication becomes a viable 
alternative for increasing availability 

■ The challenge is to devise dynamic and adaptive algorithms for adjusting the check-
point interval and for switching between check-point/restart and replication as the 
appropriate availability mechanism

Check-Point/Restart
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■ Ideally, a check-point should be taken only shortly before each failure 
■ Doing so will minimize the number of check-points taken as well as minimizing the 

amount of wasted computation 
■ Such a just-in-time check-pointing mechanism can be built based on a predictor for 

node failures

Just-in-Time Check-Pointing
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■ Apply our node-failure prediction model every 5 minutes to decide which nodes are 
prone to fail in the following 5-minute time window 

■ Evaluate the strategy by simulating the workload from the Google trace, and using 
predictions to decide when to check-point running tasks 

■ The simulation covers the 10 days used for testing of our predictive model 

Just-in-Time Check-Pointing
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■ Cost metrics: 
■ Total check-pointing cost (the sum of the check-point sizes for all check-points created), 
■ Number of check-points performed, 
■ Restore cost (sum of the check-point sizes for all tasks restored after a failure), 
■ Wasted CPU time (total CPU time used for all tasks that are interrupted by the failure between the last 

check-point and the failure) 
■ Compare six different strategies: 
■ Just-in-time (JIT), 
■ Fixed interval at 10 minutes (Fix10), 
■ Fixed interval at 30 minutes (Fix30), 
■ Fixed interval at 60 minutes (Fix60), 
■ Adaptive based on Poisson distribution of inter-failure times (Adapt) 
■ No check-pointing (NoCP)

Just-in-Time Check-Pointing
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Just-in-Time Check-Pointing
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Just-in-Time Check-Pointing
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Towards Manageability

■ Predictive models built for energy efficiency and resilience can be the basis also 
for a management platform 

■ The platform projects the system into the future and devises preventive actions 
based on control mechanisms in case of possible future anomalies 

■ Detecting anomalous behavior is viewed as a big data classification problem and 
is tackled using Deep Learning techniques for recognizing outliers among 
cluster patterns arising in streamed data
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Towards Manageability

■ User interface is based on a “route planner” metaphor similar to Google Maps or 
its “crowd-sourced” counterpart, Waze 

■ Administrators are presented a global view of the system indicating the actual 
loads at various system resources (analogs of vehicular traffic) along with other 
measures such as power consumption, temperatures, queue lengths and job 
delays 

■ The platform signals possible anomalous situations in the current system state 
and suggests preventive actions such as checkpointing, replication, migration, 
consolidation
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Towards Manageability

■ When invoked by an end-user, the service displays different options for 
executing her job (analogs of alternate routes for traveling from point A to point B 
on a map) 

■ The options are computed based on predictions of the job’s demands along 
with predictions for future system states (including failures) 

■ For each option, she is given estimates for various metrics such as time-to-
completion, cost and energy consumed 

■ The user may be given the option to select an alternative execution path for her 
job or alternative system responses to potential anomalies, sorted by their 
“popularity”
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Route Planner Metaphor 
Waze
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Prototype Architecture

■ Based on a collection of open-source software technologies 
■ Apache Spark for cluster computing 
■ Apache Cassandra for database storage 
■ Apache MLib for machine learning libraries 
■ Grafana for data analytics and visualization 
■ Apache Streaming and Message Queuing Telemetry Transport (MQTT) for 

communicating with sensors 
■ Apache Kafka Publish/Subscribe service  
■ Google TensorFlow technology on Apache Spark ML Pipeline  
■ Databricks Deep Learning Pipelines
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Streaming Data Monitoring
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Management Platform Architecture
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