
Future Trends, AI and
Predictive Technologies for
Cloud Computing and HPC

Ozalp Babaoglu

© Babaoglu

Technological and Application Trends

■ Internet-of-Things
■ Edge computing
■ 5G
■ Server-less computing
■ Big data, Data analytics
■ Cloud for Machine learning, Artificial Intelligence
■ Machine learning, Artificial Intelligence for Cloud

2

© Babaoglu

Internet-of-Things
■ IoT connected devices installed base worldwide

3 © Babaoglu

■ In IoT, what is interesting is not the number of devices but the data they generate

Internet of Things

2020 — Amount of data generated per day by a
Person 1.5GB

Smart Hospital 3TB
Self-driving car 4TB

Connected airplane 5TB
Connected factory 3PB

4

© Babaoglu

From Cloud to Edge Computing

■ Edge: extremity of a typical enterprise network of IoT-enabled devices —
sensors, actuators (billions)

■ Fog: computing devices close to the edge of the IoT network to process the
large amounts of generated data (millions)

■ Core: backbone network connecting geographically dispersed fog networks
(tens of thousands)

■ Cloud: provides the storage and processing capabilities for the massive
amounts of aggregated data originating at the edge, hosts applications to
interact with and manage the IoT-enabled devices (thousands)

5 © Babaoglu

Edge Computing

■ Cloud computing usually involves thousands of physical servers running in
centralized data centers close to the core of the Internet

■ Edge computing directs specific processes away from centralized data centers
to points in the network close to users, devices and sensors

■ Edge computing is essential for IoT, as it allows collection and processing of
huge amounts of data in real-time with low latency

■ Edge computing helps IoT systems lower connectivity costs by sending only
the most important information to the cloud, as opposed to raw streams of
sensor data

6

© Babaoglu

5G

■ 5G is the fifth generation technology standard for cellular networks
■ Evolution of 4G
■ 5G is a key enabling technology for both IoT and edge computing
■ 5G provides the fabric for device-to-device and device-to-edge

communication
■ 5G delivers the higher speeds and broader bandwidths required to support

analytics and control functions in real-time where the data is created and actions
are taken

7 © Babaoglu

5G

■ With 5G, retailers will benefit from up-to-date information on consumer buying
trends, factories will be able to perform predictive maintenance on equipment
that’s about to fail, cellphone carriers will be able to support augmented reality

■ As 5G deployment takes place, hybrid cloud systems will increasingly take
advantage of opportunities to perform computations at the edge

■ 5G frequency bands
■ Low-band 5G uses 600-700 MHz to achieve 30-250 Mbps speed
■ Mid-band 5G uses 2.5-3.7 GHz, to achieve 100-900 Mbps speed
■ High-band 5G uses 25-39 GHz to achieve 1 Gbps speed

8

© Babaoglu

Big Data

■ An important application of cloud computing is to perform data analytics — the
science of extracting information from large volumes of data

■ Cloud analytics refers to a service model where one or more components of
data analysis and business intelligence operations are implemented in the cloud

■ Combined, big data and the cloud can offer tremendous value to companies by
making it easier to track, analyze and ultimately act on insights

9 © Babaoglu

Big Data

■ In the pre-cloud era,
■ It was tempting for business processes to become isolated in silos making

coordination cumbersome, sharing difficult and transferring data, especially large
amounts of it, slow

■ Big data processing was cumbersome, and expensive meaning that big data efforts
were reactive, providing insights from out-of-date archived data whereas businesses
need to be proactive and be able to access, analyze and act upon the most current
data

10

© Babaoglu

Sources of Big Data

11

Terabytes
(1012)

Gigabytes
(109)

Exabytes
(1018)

Petabytes
(1015)

 Velocity | Variety | Variability

Vo
lum

e

Audio/video
Log files

Text/Image

Data market feeds
eGov feeds
Weather

Wikis/blogsClick stream Sensors/RFID/devices

Spatial & GPS
Mobile Advertising Collaboration

eCommerce

Digital marketing

Search marketing

Web logs

RecommendationsSales pipeline

Payables

Payroll

Inventory

Contacts

Deal tracking

Customer Relationship Management (CRM)

Enterprise Resource Planning (ERP) Modern web Internet of Things

© Babaoglu

Big Data

■ Big Data affects the organization of database systems
■ Traditional relational databases are unable to satisfy some of the requirements

of big data and NoSQL databases have emerged for many cloud applications
■ Key-Value pair stores are simpler and can benefit from horizontal scaling to

large clusters
■ Many NoSQL stores compromise consistency in favor of availability, partition

tolerance, and speed

12

© Babaoglu

Machine Learning

■ Machine learning (or predictive analytics) is a subfield of Artificial Intelligence
and statistics that provides systems the ability to automatically learn and
improve from experience without being explicitly programmed

■ The process of learning begins with a training phase where observations or
data, such as examples, direct experience, or instructions are processed to
discover patterns so that better decisions can be made in the future

13 © Babaoglu

Why Learn?

14

1. Learn it if you cannot track it
(e.g., AI gaming, robot control)

2. Learn it if you have to adapt/personalize
(e.g., predictive typing)

3. Learn it if you cannot program it
(e.g., recognizing speech/image/gestures, NL translation)

4. Learn it if you cannot scale it
(e.g., recommendations, spam & fraud detection)

© Babaoglu

Cloud for Machine Learning and AI
AWS

■ SageMaker — fully managed platform to build, train, and deploy machine
learning models

■ Rekognition — a deep learning-based image recognition service
■ Lex — for building voice and text chat chatbots
■ Polly — convert text into lifelike speech
■ Comprehend — continuously trained and fully managed natural language

processing
■ Transcribe — speech-to-text conversion with automatic speech recognition

15 © Babaoglu

Cloud for Machine Learning and AI
Azure and Google

■ Azure Machine Learning Studio
■ Google AI Platform
■ TensorFlow

16

© Babaoglu

Generative AI on Cloud
AWS

■ AWS tools for building generative AI applications:
■ Bedrock: collection of foundation models from leading AI companies like AI21 Labs,

Anthropic, Cohere, Meta, Mistral AI, Stability AI
■ Elastic Compute Cloud instances powered by NVIDIA H100 Tensor Core GPUs
■ Elastic Compute Cloud instances with up to 16 AWS Trainium accelerators
■ Elastic Compute Cloud instances powered by Inferentia2 accelerators
■ UltraClusters consist of thousands of accelerated EC2 instances that are co-located

in a given AWS Availability Zone and interconnected using a petabit-scale nonblocking
network

17 © Babaoglu

■ Machine learning and predictive analytics provided through cloud computing
are core capabilities that are useful throughout a business

■ They can also be valuable in improving the operation and management of
cloud and HPC systems themselves

Machine Learning and AI for Cloud Management

18

© Babaoglu

■ Energy efficiency: Limit the power consumption of future HPC systems to
45MW (energy requirement of a small town of 80,000) by improving their energy
efficiency

■ Availability: Limit the perceived failure rates of future HPC systems to the
equivalent of once-per-week levels to improve their availability

■ Management: Improve manageability of future HPC systems by limiting reliance
on human operators and facilitating semi-automatic control

19

Machine Learning and AI for Cloud Management

© Babaoglu

Using Past Data to Predict the Future

■ Scientific discovery is increasingly being driven by data
■ The data-driven approach allows us to uncover interesting properties of

processes without having to construct cause-effect mathematical models
■ Easy access to massive data sets, big-data analytics tools and HPC have

been factors fueling this trend
■ The data-driven approach can be taken one step further by adding an

intelligence component in the form of a predictive computational model
■ Beyond gaining knowledge about the past from historical data, the “data-driven

plus intelligence” approach can have predictive capabilities about future or
unseen behaviors

20

© Babaoglu

Cognification

21

Penguin Books, 2016
© Babaoglu

Cognification

■ Cognification — Transforming ordinary (dumb) objects, services or activities into
their intelligent counterparts through data by tapping into existing services for
the required analytics and intelligence

■ Similar to electrification (of mechanical, manual tasks) that took place more than
a century ago when electricity became ubiquitous as a commodity

22

© Babaoglu

Cognification

23 © Babaoglu

Cognified WSC Systems

■ Cognification in the form of predictive computational models could be the
software technology bridge that is necessary for achieving sustainable cloud
computing and HPC

■ Need data and intelligence
■ Intelligence derived from predictive models for workloads, power consumption,

failures
■ If predictive models can be built online from streamed data, they can be used to

enact control over the system in real time

24

© Babaoglu

Towards Cognified WSC
Predictive Models

■ Technologies and services to be tapped:
■ Data analytics — streaming data management
■ Intelligence — machine learning, deep learning
■ Need to build predictive models for
■ Power consumption
■ Workloads
■ Failures

25 © Babaoglu

Data-driven Energy Efficiency

■ Based on predictive models for power consumption, workloads and failures
built from online streamed data and on advanced hybrid optimization techniques
using Constraint Programming

■ Achieved through a cognified dispatcher — which jobs to run next (scheduling)
and where to run them (allocation) based on
■ intelligent consolidation: gather as many active jobs/threads on as few physical

nodes/cores as possible so that idle nodes/cores can be switched to low-power
mode or powered off completely

■ failure-aware allocation: avoid assigning new jobs to nodes that are likely to fail in the
near future

■ energy-aware scheduling through power capping: select the set of jobs to run such
that their cumulative power needs do not exceed a threshold

26

© Babaoglu

■ Power consumption of HPC applications are often multidimensional, nonlinear
and has large dynamic range

■ Power-aware allocation schemes have to consider multiple measures for
workloads (e.g., memory size in addition to CPU utilization) and take into
account the effects of co-locating jobs on the same node

■ In large Data Centers, consolidation has been facilitated to a large extent by the
availability of virtualization and container technologies such as Docker and
Kubernetes

■ Container technologies are not as widespread in current HPC systems which
makes consolidation less common as an energy efficiency mechanism for them

Energy Efficiency

27 © Babaoglu

Data-driven Availability
■ Based on predictive models for failures and workloads built from online streamed

data
■ Achieved through
■ adaptive checkpointing: dynamically adjust the checkpoint interval based on predicted

failure rates
■ “just-in-time” checkpointing: time proactive checkpoints to complete shortly before

failures occur
■ adaptive migration: if a job that is predicted to take a long time to complete is started on

a node with moderate failure probability, move it to a safer node; if the job is predicted to
complete soon, leave it where it is (even if it is a node with moderate failure probability)

■ adaptive replication: hybrid mechanism that selects automatically between just-in-time
checkpointing and replication while dynamically adjusting the checkpoint interval and the
number of activated replicas

28

© Babaoglu

■ Process-level or hardware-level replication is an often-employed technique to
increase availability in Data Centers

■ It is less common in HPC systems for several reasons
■ failure independence, which is the foundation for replication is difficult to satisfy in HPC

systems which tend to be more tightly coupled
■ replication often incurs high overhead in order to guarantee replica equivalence despite

non-determinism in applications
■ hardware-level replication contributes to increasing socket counts and power

consumption, which are already at elevated levels in HPC systems

Data-driven Availability

29 © Babaoglu

Data-driven Availability

■ When replication is in use to improve availability, the dispatcher tries to allocate
replicas on nodes that exhibit the greatest failure independence as measured by
predicted failure correlations between them

30

© Babaoglu

What We Have Done

■ Built and tested random forest ensemble classifiers for node failures based on
416 features derived from a public Google dataset for a cluster of 12,453
machines over a 29-day period

■ Built and tested predictive models for system power consumption based on
data from a hybrid CPU-GPU-MIC HPC system called Eurora installed at a local
data center (Cineca)

■ Built and tested predictive models for job duration based on data from the
Eurora system

31 © Babaoglu

Evaluation

■ Train the classifier on 15 benchmarks constructed from the Google trace
■ If the “down time” of a node is longer than 2 hours, assume it is a node failure,

otherwise assume node removed for a software update
■ Continuous scores of the classifier are discretized (positive, negative) based on

a threshold
■ Precision — fraction of all classifications that are correctly classified as positive
■ Recall or True Positive Rate — fraction of positive classifications that are correct

32

© Babaoglu

Evaluation

■ The Receiver Operating Characteristic (ROC) curve plots the True Positive
Rate (TPR) versus the False Positive Rate (FPR) of the classifier as the threshold
is varied

■ The Precision-Recall (PR) curve plots the precision versus recall (or TPR) of the
classifier as the threshold is varied

33 © Babaoglu

Failure Prediction
“Area under ROC” and “Area under PR”

34

Cluster Comput (2016) 19:865–878 871

Fig. 2 AUROC and AUPR on ensemble test data

values greater than 0.5 correspond to classifiers that perform
better than random guesses, while AUPR represents an aver-
age classification precision, so, again, the higher the better.
AUROC and AUPR do not depend on the relative distribu-
tion of the two classes, so they are particularly suitable for
class-imbalance problems such as the one at hand.

Figure 2 showsAUROC andAUPR values obtained for all
datasets, evaluated on the ensemble test data. For all bench-
marks, AUROC values are very good, over 0.75 and up to
0.97. AUPR ranges between 0.38 and 0.87. Performance
appears to increase, especially in terms of precision, towards
the end of the trace. Lower performance that is observed for
the first two benchmarks could be due to the fact that some of
the aggregated features (those over 3 or 4 days) are computed
with incomplete data at the beginning.

To evaluate the effect of the different parameters and the
ensemble approach, Fig. 3 displays the ROC and PR curves
for the benchmarks that result in the worst and best results
(4 and 14, respectively). Performance of the individual clas-
sifiers in the ensemble are also displayed (as points in the
ROC/PR space since their answer is categorical). We can
see that individual classifiers result in very low FPR which
is very important in predicting failures. Yet, in many cases,
the TPR values are also very low. This means that most test
data is classified as safe and very few failures are actually
identified. TPR appears to increase when the fsafe parame-
ter decreases, but at the expense of the FPR and Precision.
The plots show quantitatively the clear dependence between
the three plotted measures and fsafe values. As the amount
of safe training data decreases, the classifiers become less
stringent and can identify more failures, which is an impor-
tant result for this class-imbalance problem. Also, the plot
shows clearly that individual classifiers obtained with differ-
ent values for fsafe are diverse, which is critical for obtaining
good ensemble performance.

In general, the points corresponding to the individual clas-
sifiers are below the ROC and PR curves describing the
performance of the ensemble. This proves that the ensemble

method is better than the individual classifiers for this prob-
lem,which can be also due to their diversity. Some exceptions
do appear (points above the solid lines), however for very low
TPR (under 0.2) so in an area of the ROC/PR space that is
not interesting from our point of view. We are interested in
maximizing the TPR while keeping the FPR at bay. At a
FPR of 5 %, which means few false alarms, the two exam-
ples from Fig. 3 display TPR values of 0.272 (worst case)
and 0.886 (best case), corresponding to precision values of
0.502 and 0.728 respectively. This is much better than indi-
vidual classifiers at this level, both in terms of precision and
TPR. For failure prediction, this means that between 27.2
and 88.6 % of failures are identified as such, while from all
instances labeled as failures, between 50.2 and 72.8 % are
actual failures.

According to our classification strategy, a node would be
considered to be in safe state whether it fails in 2 days or in 2
weeks. Similarly, it is considered to be in fail state whether
it fails in 10 min or within 23 h. Obviously the two situations
are very different and the impact of misclassification varies
depending on the time to the next failure. In earlier work [32],
we have shown that misclassifications of time points in the
fail class (false negatives) are in general far from the time
of failure, while misclassifications of the safe class (false
positives or false alarms) are, on average, closer to the failure
instant than are true negatives (correct classification of safe
time points). This implies that the impact of misclassification
is reduced.

5 Impact on running tasks

When a node fails, all tasks running on that node are inter-
rupted. Thus, resources (e.g., CPU time) that had been
consumedby interrupted tasks arewasted. To study the extent
of this wastage, we estimated the number of interrupted tasks
and the corresponding CPU-hours wasted due to failures in
our data. The study was limited to the period of the trace
corresponding to ensemble test data in all 15 benchmarks
representing 180 hours of data and containing 668 node fail-
ures. For this period, a simple count of tasks evicted or killed
in close vicinity of the failure results in a total of 5488 inter-
rupted tasks, corresponding to over 31,393 CPU-hours being
wasted.

The Google dataset contains data from different tasks
that use resources very differently. Some tasks correspond to
latency-sensitive, long-running, revenue-generating produc-
tion services that respond to user queries. If these tasks are
interrupted, only the latest queries will be affected, so most
of the CPU time they used is not actually wasted. Other tasks
are from non-production batch jobs, and typically return a
value at the very end, so their interruption results in all of
the CPU time they used being wasted. The Google dataset

123

Author's personal copy

© Babaoglu

Failure Prediction
Receiver Operating Characteristic

35

872 Cluster Comput (2016) 19:865–878

Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives

123

Author's personal copy

“Best case” benchmark

872 Cluster Comput (2016) 19:865–878

Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives

123

Author's personal copy

“Worst case” benchmark
■ fsafe is a parameter of the classifier that governs sampling to compensate class imbalance

© Babaoglu

Failure Prediction
Precision Recall

36

872 Cluster Comput (2016) 19:865–878

Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives

123

Author's personal copy

“Best case” benchmark

872 Cluster Comput (2016) 19:865–878

Fig. 3 ROC and PR curves for
worst and best performance
across the 15 benchmarks (4 and
14, respectively). The vertical
lines correspond to FPR of 1, 5
and 10 %. Note that parameter
fsafe controls the ratio of safe
to fail data in the training
datasets. a Worst case
(Benchmark 4), b Best case
(Benchmark 14)

includes the scheduling class of a task to distinguish between
production services (higher scheduling classes) and non-
production batch jobs (lower scheduling classes). Table 3
indicates the distribution of the interrupted tasks into the dif-
ferent scheduling classes. We can see that most interrupted
tasks are from scheduling class 0 (non-production). How-
ever, most of the wasted CPU time corresponds to higher
scheduling classes since these jobs are long running.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions
dynamically. This is in itself an extensive research area, but
a simple procedure could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. In the following, we simulate
such an approach. For better precision, we quarantine a node
only if two consecutive time points are classified as FAIL.

While a node is in quarantine, all tasks that would have
otherwise run on that node need to be redirected. Among

Table 3 Number of tasks in each scheduling class that are interrupted
by node failures, together with those recovered and redirected with
perfect prediction

Class Interrupted Recovered Redirected

0 2260 (2675) 1863 (1538) 27,908 (6550)

1 851 (1748) 387 (351) 4796 (2294)

2 1632 (16,663) 667 (2035) 7586 (5615)

3 745 (10,305) 185 (1269) 791 (3584)

Total 5488 (31,393) 3102 (5194) 41,081 (18,044)

CPU-hours used by the tasks in each category are shown in parentheses
(wasted, recovered and redirected CPU-hours)

redirected tasks, some would have finished before the node
failure, others would have been interrupted. We call the
latter recovered tasks, since their interruption was avoided
by proactively redirecting them. The aim of our proactive
approach is to maximize the number of recovered tasks (the
gain) while minimizing the number of redirected tasks (the
cost). As we shall see later in this section, the two objectives

123

Author's personal copy

“Worst case” benchmark

© Babaoglu

Power Consumption Prediction
■ Eurora HPC system at CINECA

37 © Babaoglu

Predicting System Power

38

:RUNORDG�
WUDFH

695�
PRGHO

+HXULVWLF�

OLQHDU�
PRGHO

3UHGLFWHG�
MRE�SRZHU

3UHGLFWHG�MRE�
GXUDWLRQ

3UHGLFWHG�
V\VWHP�
SRZHU

© Babaoglu

■ Among the many software-based mechanisms for increasing availability,
check-point/restart is by far the most widely used in current systems

■ Check-pointing consists of taking a snapshot of the application in execution
and saving it on nonvolatile media (usually a parallel file system)

■ When a failure occurs, the application is restarted from the last check-point
found on nonvolatile media and the application continues until the next check-
point

Data-driven Availability

39 © Babaoglu

■ Check-pointing and restarting can be made automatic and transparent to
applications by initiating them pro-actively through a system software layer

■ This removes a big burden from users, but it comes at the cost of increasing
overhead since the state that is saved and restored to/from nonvolatile memory
cannot exploit application semantics (to reduce its size) and has to include the
entire application state

■ How to maintain the convenience of system-initiated check-pointing at a cost
comparable to user-initiated check-pointing?

■ Too frequent check-pointing with high overhead can slow down applications to a
crawl and can also be detrimental for energy efficiency

Check-Point/Restart

40

© Babaoglu

■ “Optimal” values for check-point intervals can be computed based on statistical
averages for inter-failure times and check-pointing costs

■ In HPC systems with high failure rates and large check-point/restart times, the
mechanism can degenerate into a “pure overhead” scheme performing only check-
points/restarts and no useful computation

■ Under these conditions, failure masking through replication becomes a viable
alternative for increasing availability

■ The challenge is to devise dynamic and adaptive algorithms for adjusting the check-
point interval and for switching between check-point/restart and replication as the
appropriate availability mechanism

Check-Point/Restart

41 © Babaoglu

■ Ideally, a check-point should be taken only shortly before each failure
■ Doing so will minimize the number of check-points taken as well as minimizing the

amount of wasted computation
■ Such a just-in-time check-pointing mechanism can be built based on a predictor for

node failures

Just-in-Time Check-Pointing

42

© Babaoglu

■ Apply our node-failure prediction model every 5 minutes to decide which nodes are
prone to fail in the following 5-minute time window

■ Evaluate the strategy by simulating the workload from the Google trace, and using
predictions to decide when to check-point running tasks

■ The simulation covers the 10 days used for testing of our predictive model

Just-in-Time Check-Pointing

43 © Babaoglu

■ Cost metrics:
■ Total check-pointing cost (the sum of the check-point sizes for all check-points created),
■ Number of check-points performed,
■ Restore cost (sum of the check-point sizes for all tasks restored after a failure),
■ Wasted CPU time (total CPU time used for all tasks that are interrupted by the failure between the last

check-point and the failure)
■ Compare six different strategies:
■ Just-in-time (JIT),
■ Fixed interval at 10 minutes (Fix10),
■ Fixed interval at 30 minutes (Fix30),
■ Fixed interval at 60 minutes (Fix60),
■ Adaptive based on Poisson distribution of inter-failure times (Adapt)
■ No check-pointing (NoCP)

Just-in-Time Check-Pointing

44

© Babaoglu

Just-in-Time Check-Pointing

45

To
ta

l c
os

t

Nu
m

be
r o

f c
he

ck
-p

oin
ts

© Babaoglu

Just-in-Time Check-Pointing

46

Re
st

or
e

Co
st

W
as

te
d

CP
U

Tim
e

© Babaoglu

Towards Manageability

■ Predictive models built for energy efficiency and resilience can be the basis also
for a management platform

■ The platform projects the system into the future and devises preventive actions
based on control mechanisms in case of possible future anomalies

■ Detecting anomalous behavior is viewed as a big data classification problem and
is tackled using Deep Learning techniques for recognizing outliers among
cluster patterns arising in streamed data

47 © Babaoglu

Towards Manageability

■ User interface is based on a “route planner” metaphor similar to Google Maps or
its “crowd-sourced” counterpart, Waze

■ Administrators are presented a global view of the system indicating the actual
loads at various system resources (analogs of vehicular traffic) along with other
measures such as power consumption, temperatures, queue lengths and job
delays

■ The platform signals possible anomalous situations in the current system state
and suggests preventive actions such as checkpointing, replication, migration,
consolidation

48

© Babaoglu

Towards Manageability

■ When invoked by an end-user, the service displays different options for
executing her job (analogs of alternate routes for traveling from point A to point B
on a map)

■ The options are computed based on predictions of the job’s demands along
with predictions for future system states (including failures)

■ For each option, she is given estimates for various metrics such as time-to-
completion, cost and energy consumed

■ The user may be given the option to select an alternative execution path for her
job or alternative system responses to potential anomalies, sorted by their
“popularity”

49 © Babaoglu

Route Planner Metaphor
Waze

© Babaoglu

Prototype Architecture

■ Based on a collection of open-source software technologies
■ Apache Spark for cluster computing
■ Apache Cassandra for database storage
■ Apache MLib for machine learning libraries
■ Grafana for data analytics and visualization
■ Apache Streaming and Message Queuing Telemetry Transport (MQTT) for

communicating with sensors
■ Apache Kafka Publish/Subscribe service
■ Google TensorFlow technology on Apache Spark ML Pipeline
■ Databricks Deep Learning Pipelines

51 © Babaoglu

Streaming Data Monitoring

52

© Babaoglu

Management Platform Architecture

53

